Design Features of Impeller Vane Cascades to Pump Gas and Liquid Mixtures Conducive to Reducing Gas Cavern Magnitudes
Authors: Trulev A.V., Lomakin V.O., Klindukh I.V., Udovitskiy V.S., Timushev S.F. | Published: 14.09.2022 |
Published in issue: #9(750)/2022 | |
Category: Energy and Electrical Engineering | Chapter: Hydraulic Machines and Hydropneumatic Units | |
Keywords: numerical simulation, impeller vane cascades, gas and liquid mixtures, gas-filled caverns, gas plug formation, stacked vane cascade |
We employed numerical simulation methods to investigate how design features of impeller vane cascades in a centrifugal pump processing gas and liquid mixtures will affect the magnitude of gas caverns. We derived a mathematical model for multiphase flow of incompressible fluid. We performed hydrodynamic computations for various impeller vane cascade designs. We identified regions of local gas separation in commercially available and improved cascades that may result in gas plug formation and pump failure. The paper investigates the effect of the following parameters on the magnitude of a gas cavern: the angle of attack, pressure feed, pressure gradient, and the presence of through holes and transverse cutouts in a single-tier vane cascade. We consider design features of stacked van cascades and investigate how the vane length and vane distribution uniformity in the blading section of a stacked vane system affect gas cavern magnitudes. We selected the optimum vane cascade design for multiphase impellers. The paper then indicates further lines of research.
References
[1] Drozdov A.N. Tekhnologiya i tekhnika dobychi nefti pogruzhnymi nasosami v oslozhnennykh usloviyakh [The technology and technique of oil production by submergible pumps in the complicated conditions]. Moscow, MAKS Press Publ., 2008. 309 p. (In Russ.).
[2] Den’gaev A.V. Povyshenie effektivnosti ekspluatatsii skvazhin pogruzhnymi tsentrobezhnymi nasosami pri otkachke gazozhidkostnykh smesey. Diss. kand. tekh. nauk [Raising efficiency of well operation by submerged centrifugal pumps at delivering liquid-gas mixture. Kand. tech. sci. diss.]. Moscow, RGU Publ., 2005. 212 p. (In Russ.).
[3] Ageev Sh.R., Grigoryan E.E., Makienko G.P. Rossiyskie ustanovki lopastnykh nasosov dlya dobychi nefti i ikh primenenie [Russian impeller pump settings for oil delivery and their application]. Perm’, Press-Master Publ., 2007. 645 p. (In Russ.).
[4] Vakhitova R.I., Saracheva D.A., Urazakov D.R. et al. Povyshenie effektivnosti raboty pogruzhnykh elektrotsentrobezhnykh ustanovok pri dobyche nefti s vysokim gazosoderzhaniem [Raising work efficiency of submerged electrocentrifugal pump plants at extracting oil with high gas content]. Al’met’yevsk, AGNI Publ., 2019. 104 p. (In Russ.).
[5] Yakimov S.B., Shportko A.A., Shalagin Yu.Yu. Ways of improving gas separators reliability used to protect electric centrifugal pumps (ESP) in the deposits of PJSC "NK "Rosneft". Oborudovanie i tekhnologii dlya neftegazovogo kompleksa [Equipment and Technologies for Oil and Gas Complex], 2017, no. 1, pp. 33–39. (In Russ.).
[6] Yakimov S.B. Potential optimization of ESP wear resistance class at Orenburgneft JSC fields. Nauchno-tekhnicheskiy vestnik OAO «NK «Rosneft’», 2015, no. 3, pp. 85–92. (In Russ.).
[7] Trulev A.V., Loginov V.F., Gorbunov S.I. et al. Razrabotka i opytno-promyshlennoe vnedrenie pogruzhnykh UETsN kontseptual’no novoy konstruktsii dlya ekspluatatsii malodebitnykh skvazhin s vysokim soderzhaniem svobodnogo gaza i mekhanicheskikh primesey [Development and experimental commercialization of submerged electrocentrifugal pump of conceptually new construction for exploitation of low-debit wells with high free gas and mechanical impurity concentration]. V: Sbornik rabot laureatov Mezhdunarodnogo konkursa nauchno tekhnicheskikh i innovatsionnykh razrabotok, napravlennykh na razvitie toplivno-energeticheskoy i dobyvayushchey otrasli [In: Work collection of laureates of International competition of scientific technical and innovative products dedicated to development of fuel-energy and extractive sector]. Moscow, Format Publ., 2019, pp. 307–310. (In Russ.).
[8] Trulev A., Verbitsky V., Timushev S. et al. Electrical submersible centrifugal pump units of the new generation for the operation of marginal and inactive wells with a high content of free gas and mechanical impurities. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 492, art. 012041, doi: https://doi.org/10.1088/1757-899X/492/1/012041
[9] Trulev A., Timushev S., Lomakin V. Conceptual features of improving the flow-through parts of gas separators of submersible electric pumps systems for the production of formation fluid in order to improve the separating properties, energy efficiency and reliability. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 779, art. 012036, doi: https://doi.org/10.1088/1757-899X/779/1/012036
[10] Trulev A.V., Timushev S.F., Shmidt E.M. Features of ESP gas separator bench tests for oil production purposes. Neft’. Gaz. Novatsii, 2020, no. 7, pp. 59–66. (In Russ.).
[11] Trulev A.V., Timushev S.F., Lomakin V.O. Conceptual features of the method of bench testing of gas separators for submersible electric centrifugal pumps for oil production. Nasosy. Turbiny. Sistemy [Pumps. Turbines. Systems], 2020, no. 2, pp. 11–27. (In Russ.).
[12] Trulev A.V., Timushev S.F., Lomakin V.O. et al. Problems and ways to solve the development of heavy oil fields with complex geological conditions. Neft’. Gaz. Novatsii, 2020, no. 2, pp. 55–60. (In Russ.).
[13] Trulev A.V., Shmidt E.M. Bench tests methodological specifics of submersible electric centrifugal pumps gas separating installations for oil extraction. Vestnik MAI [Aerospace MAI Journal], vol. 28, no. 3, pp. 73–80, doi: https://doi.org/10.34759/vst-2021-2-73-80 (in Russ.).
[14] Petrov V.I., Chebaevskiy V.F. Kavitatsiya v vysokooborotnykh lopastnykh nasosakh [Cavitation in high-speed impeller pumps]. Moscow, Mashinostroenie Publ., 1982. 192 p. (In Russ.).
[15] Lyapkov P.D. Motion of a spherical particle relative to liquid in intervane channel of a pump impeller. Trudy MINKh i GP, 1977, no. 129, pp. 3–36. (In Russ.).
[16] Timushev S.F., Fedoseev S.Yu. Definition of the incipient cavitation number in a centrifugal pump by computational testing. Vestnik MAI [Aerospace MAI Journal], 2012, vol. 19, no. 2, pp. 89–93. (In Russ.).
[17] Yakovlev A.A., Timushev S.F., Tsipenko A.V. Study of axial fan in the cae system "FlowWision". Vestnik MAI [Aerospace MAI Journal], 2011, vol. 18, no. 6, pp. 35–38. (In Russ.).
[18] Gordeev V.A., Timushev S.F., Firsov V.P. et al. Design basics of aggregates disclosure of centrifugal space systems. Vestnik MAI [Aerospace MAI Journal], 2011, vol. 18, no. 1, pp. 47–53. (In Russ.).
[19] Volkov M.G., Zeygman Yu.V. Investigating the gas-liquid flow structure in the electrical submersible pump unit’s impeller. Neftyanoe khozyaystvo [Oil Industry], 2021, no. 6, pp. 90–93. (In Russ.).
[20] Peshcherenko M.P., Perel’man O.M., Rabinovich A.I. et al. Increase of ESP efficiency. Multiphase pumps application. Burenie i neft’, 2014, no. 4, pp. 56–60. (In Russ.).
[21] Achour L., Speclin M., Belaidi I. et al. Numerical study of the performance loss of a centrifugal pump carrying emulsion. E3S Web Conf., 2021, vol. 321, art. 01010, doi: https://doi.org/10.1051/e3sconf/202132101010
[22] Achour L., Speclin M., Belaidi I. et al. Numerical assessment of the hydrodynamic behavior of a volete centrifugal pump handling emulsion. Entropy, 2022, vol. 24, no. 2, art. 221, doi: https://doi.org/10.3390/e24020221
[23] Valdés J.P., Asuaje M., Ratkovich N. Study of an ESP’s performance handling liquid-liquid flow and unstable O-W emulsions part II: coupled CFD-PBM modelling. J. Pet. Sci. Eng., 2021, vol. 198, art. 108227, doi: https://doi.org/10.1016/j.petrol.2020.108227
[24] Banjar H., Zhang H.Q. Experiments and emulsion rheology modeling in an electric submersible pump. Proc. Int. Petroleum Technology Conf., 2019, paper IPTC-19463-MS, doi: https://doi.org/10.2523/iptc-19463-ms
[25] Zhu J., Zhu H., Cao G. et al. A new mechanistic model for oil-water emulsion rheology and boosting pressure prediction in electrical submersible pumps ESP. Proc. SPE Annual Technical Conf. and Exhibition, 2019, paper SPE-196155-MS, doi: https://doi.org/10.2118/196155-ms
[26] Zhu J., Zhu H., Cao G. et al. A new mechanistic model to predict boosting pressure of electrical submersible pumps ESPs under high-viscosity fluid flow with validations by experimental data. Proc. SPE Gulf Coast Section Electric Submersible Pumps Symp., 2019, paper SPE-194384-MS, doi: https://doi.org/10.2118/194384-ms
[27] Zhang M., Dabirian R., Mohan R.S. et al. Effect of shear and water cut on phase inversion and droplet size distribution in oil-water flow. J. Energy Resour. Technol., 2019, vol. 141, no. 3, art. 032905, doi: https://doi.org/10.1115/1.4041661
[28] Lomakin V.O., Chaburko P.S., Kuleshova M.S. Multi-criteria optimization of the flow of a centrifugal pump on energy and vibroacoustic characteristics. Procedia Eng., 2017, vol. 176, pp. 476–482, doi: https://doi.org/10.1016/j.proeng.2017.02.347
[29] Lomakin V.O., Kuleshova M.S., Bozh’eva S.M. Numerical modeling of liquid flow in a pump station. Power. Technol. Eng., 2016, vol. 49, no. 5, pp. 324–327, doi: https://doi.org/10.1007/s10749-016-0623-9
[30] Lomakin V.O. Proceedings of 2015 International Conference on Fluid Power and Mechatronics, 2015.
[31] Lomakin V.O., Kuleshova M.S., Kraeva E.A. Fluid flow in the throttle channel in the presence of cavitation. Procedia Eng., 2015, vol. 106, pp. 27–35, doi: https://doi.org/10.1016/j.proeng.2015.06.005
[32] Shargatov V.A., Gorkunov S.V., Il’ichev A.T. Dynamics of front-like water evaporation phase transition interfaces. Commun. Nonlinear Sci. Numer. Simul., 2019, vol. 67, pp. 223–236, doi: https://doi.org/10.1016/j.cnsns.2018.07.006
[33] Arefyev K.Y., Prokhorov A.N., Saveliev A.S. Study of the breakup of liquid droplets in the vortex wake behind pylon at high airspeeds. Thermophys. Aeromech., 2018, vol. 25, no. 1, pp. 55–66, doi: https://doi.org/10.1134/S0869864318010055
[34] Gouskov A.M., Lomakin V.O., Banin E.P. et al. Minimization of hemolysis and improvement of the hydrodynamic efficiency of a circulatory support pump by optimizing the pump flowpath. Biomed. Eng., 2017, vol. 51, no. 4, pp. 229–233, doi: https://doi.org/10.1007/s10527-017-9720-9
[35] Arefyev K.Y., Voronetsky A.V., Suchkov S.A. et al. Computational and experimental study of the two-phase mixing in gas-dynamic ignition system. Thermophys. Aeromech., 2017, vol. 24, no. 2, pp. 225–237, doi: https://doi.org/10.1134/S086986431702007X
[36] Lomakin V.O., Kuleshovav M.S., Bozh’eva S.M. Numerical modeling of liquid flow in a pump station. Power Technol. Eng., 2016, vol. 49, no. 5, pp. 324–327, doi: https://doi.org/10.1007/s10749-016-0623-9
[37] Arefyev K.Y., Voronetsky A.V. Modelling of the process of fragmentation and vaporization of non-reacting liquid droplets in high-enthalpy gas flows. Thermophys. Aeromech., 2015, vol. 22, no. 5, pp. 585–596, doi: https://doi.org/10.1134/S0869864315050078
[38] Belov P.A., Kobets L.P., Borodulin A.S. Impregnation kinetics of fibers with liquids: Simulation within the generalization of Navier-Stokes equations. Inorg. Mater. Appl. Res., 2014, vol. 5, no. 4, pp. 403–406, doi: https://doi.org/10.1134/S2075113314040182
[39] Trulev A., Kayuda M., Timushev S. et al. Conceptual features for improving the flow part of the multiphase stages of ESP submersible plants for small and medium feeds for extracting stratal liquid with a high free gas content. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 779, art. 012042, doi: https://doi.org/10.1088/1757-899X/779/1/012042
[40] Cheremushkin V., Lomakin V., Kalin N. et al. Development and research of a borehole centrifugal pump stage. IOP Conf. Ser.: Mater. Sci. Eng., 220, vol. 779, art. 012055, doi: https://doi.org/10.1088/1757-899X/779/1/012055