The Pre-Swirl Effect on the Efficiency of adjustable fan
Authors: Zamolodchikov G.I., Tumashev R.Z. | Published: 25.10.2018 |
Published in issue: #10(703)/2018 | |
Category: Energy and Electrical Engineering | Chapter: Turbomachines and Combination Turbine Plants | |
Keywords: single-stage axial flow fan, rotor blades, adjustable fan, variable pitch, CFD |
The purpose of the work is to substantiate the choice of the estimated pre-swirl flow coefficient that ensures high efficiency of the fan regulated by turning the rotor blades in a wide range of rates. Radial clearances, incidence angles and theoretical total pressure rise dependencies on the pre-swirl flow coefficient are obtained analytically. It is shown that to change the theoretical pressure and flow coefficients by the same amount, the fan blades with a swirl of the flow along the rotation must be turned by a larger angle than the fan with a swirl against the rotation. This leads to a greater radial clearance changes when regulating the fan and an increase in pressure losses in the end regions. When regulating the fan by turning the rotor blades, pressure losses are associated with the stator and rotor flow mode mismatch, leading to a deviation of the incidence angles from the optimal values. Incidence angles in the fans with a pre-swirl against the rotation deviate less from the optimal values at flow rate changes, than the fans with a flow swirl along the rotation. Consequently, the flow swirl against the rotation increases the efficiency of fan regulation by turning the rotor blades. The analytical data obtained are verified by the examples of three fans with different pre-swirls: along rotation, against rotation and no pre-swirl). The characteristics of these fans obtained by numerical simulation in the ANSYS CFX software complex confirmed the derived analytical dependences.
References
[1] Berezin S.E. Vybor sposoba regulirovaniya vozduhoduvok dlya aeratsii stochnyh vod [Choosing the method of air blower control for wastewater aeration]. Vodosnabzhenie i sanitarnaya tekhnika [Water Supply and Sanitary Technique]. 2012, no. 11, pp. 59–64.
[2] Dzidziguri A.A. Rabota shahtnyh ventilyatorov v slozhnyh setyah [Work mine ventilators in complex networks]. Tbilisi, AN Georgian SSR publ., 1958. 165 p.
[3] Alymenko N.I., Alymenko D.N., Trapeznikov I.I., Kovalev A.V. Trebovaniya k sovremennym osevym ventilyatoram mestnogo provetrivaniya [Requirements for modern axial local ventilation fans]. Gornyy informatsionno-analiticheskiy byulleten’ [Mining informational and analytical bulletin]. 2003, no. 10, pp. 168–170.
[4] Arhipov D.V., Tumashev R.Z. Raschetnoe issledovanie vliyaniya tangentsial’nogo naklona i kosogo obtekaniya lopatok napravlyayushchego apparata na rabotu stupeni osevogo kompressora [Numerical Investigation of Influence of Tangent Pitch and Slanting Flow of Guide Vanes on the Axial Compressor Stage Parameters]. Nauka i obrazovanie: elektronnoe nauchno-tekhnicheskoe izdanie [Science and education: scientific edition and technical publication]. 2015, no. 11, pp. 178–192, doi: 10.7463/1115.0825832. Available at: http://engineering-science.ru/doc/825832.html (accessed 14 April 2018).
[5] Karadzhi S.V., Tumashev R.Z. Sravnenie aerodinamicheskih harakteristik lopatochnyh ventsov s razlichnoy formoy osi lopatki [Aerodynamics of Axial Rotors with Different Axis of Blade Alignment]. Zhurnal Sibirskogo federal’nogo universiteta. Ser. Tekhnika i tekhnologii [Journal of Siberian Federal University. Engineering & Technologies]. 2012, vol. 5, no. 3, pp. 245–257
[6] Zamolodchikov G.I., Tumashev R.Z. Povyshenie effektivnosti ventilyatora na razlichnyh rabo-chih rezhimah putem izmeneniya formy lopatki napravlyayushchego apparata [Fan Efficiency Improvement via Changing Guide Blade Shape under Various Operating Conditions]. Nauka i Obrazovanie: Nauchnoe izdanie [Science and Education: Scientific Publication]. 2017, no. 1, pp. 20–36, doi: 10.7463/0117.0000920. Available at: http://technomagelpub.elpub.ru/jour/article/view/920/912 (accessed 1 May 2018).
[7] Brusilovskiy I.V. Aerodinamika i akustika osevyh ventilyatorov [Aerodynamics and acoustics of axial fans]. Trudy Tsentral’nogo aerogidrodinamicheskogo instituta im. N. E. Zhukovskogo [Proceedings of the Central Aero hydrodynamic Institute named after N.E. Zhukovsky]. Moscow, TSAGI publ., 2004. 275 p.
[8] Ahmedzyanov D.A., Kozlovskaya A.B. Metodika rascheta i modelirovaniya osevyh kompressorov aviatsionnyh GTD [Design procedure and modeling axial compressors aviation GTD]. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta [Bulletin of Ufa state aviation technical university]. 2009, vol. 13, no. 1, pp. 9–19.
[9] Krivosheev I.A., Rozhkov K.E., Simonov N.B. Opredelenie nominal’nyh rezhimov reshetok profiley, stupeney i kaskadov kompressorov s is-pol’zovaniem raschetnyh metodov i metoda nomogramm [Determination of nominal mode blade cascades, stages and compressor spools using the calculated methods and nomograms]. Vestnik Ufimskogo gosudarstvennogo avia-tsionnogo tekhnicheskogo universiteta [Bulletin of Ufa state aviation technical university]. 2015, vol. 19, no. 2, pp. 69–78.
[10] Brusilovskiy I.V. Otsenka vliyaniya sposoba predvaritel’noy zakrutki potoka v osevom ventilyatore na ego svoystva [Evaluation of the influence of the method of pre-twisting the flow in the axial fan on its properties]. Moscow, TSAGI publ., preprint no. 124, 2000. 5 p.
[11] Korotkov V.A., Tatarenko Yu.V. Bezrazmernye harakteristiki osera-dial’nogo kolesa tsentrobezhnoy kompressornoy stupeni [The dimensionless characteristics of centrifugal compressor stage axial-radial impeller]. Vestnik mezhdunarodnoy akademii holoda [Bulletin of the international Academy of cold]. 2014, no. 4, pp. 44–47.
[12] Petrov Yu.E. Otsenka effektivnosti regulirovaniya osevyh vozduhoduvok moshchnyh kotloagregatov [Evaluation of efficiency of control of axial blowers of powerful boilers]. Trudy TSKTI [Proceedings of CKTI]. 1970, is. 102, pp. 51–58.
[13] Kovaleva E.A., Koval’ V.A., Romanov V.V. Vliyanie radial’nogo zazora na granitsu gazodinamicheskoy ustoychivosti osevyh kompressorov GTD [Influence Of Tip Clearance On Gas-Dynamic Stability Limit Of Gas-Turbine Engine Axial Compressors]. Nasosy, turbiny sistemy [Pumps. Turbines. Systems]. 2013, no. 3, pp. 27–34.
[14] Komarov O.V., Sedunin V.A., Blinov V.L., Serkov S.A. Verifikatsiya zadachi chislennogo modelirovaniya techeniya vozduha v osevoy kompressornoy stupeni [Verification of numerical simulation of air flow in axial compressor stage]. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering]. 2016, no. 1(106), pp. 54–67.
[15] Shelkovskiy M.Yu. Verifikatsiya programmnogo kompleksa ANSYS CFX dlya chislennogo analiza trekhmernogo techeniya v kompressore [Verification of ANSYS CFX software package for numerical analysis of three-dimensional viscous flow in the compressor]. Sovremennye tekhnologii v gazoturbostroenii [Eastern-European journal of enterprise technologies]. 2012, no. 3/10(57), pp. 60–65.