Technical and technological solutions for the coal bed methane liquefaction projects
Authors: Gaivoronsky A.I., Gorbunov M.V. | Published: 11.01.2023 |
Published in issue: #1(754)/2023 | |
Category: Energy and Electrical Engineering | Chapter: Turbomachines and Combination Turbine Plants | |
Keywords: coal bed methane, liquefaction technologies, gas reserves monetization, technological equipment, capital expenses, specific energy indicators |
The paper presents technological and cost studies aimed at substantiating selection of technical and technological solutions in the coal bed methane liquefaction projects on the example of Naryksko-Ostashkinskoye and Taldinskoye methane-coal deposits in Kuzbass. Required capacity of the coal bed methane liquefaction plant is substantiated taking into account phasing of the capacity commissioning. Results of technological calculation of the preferred cycles of the coal bed methane liquefaction, as well as estimate of the cost of the main technological equipment of the compared options, are presented. It is concluded that it is necessary to adapt the initial deposit development project to the schedule for commissioning capacities of the coal bed methane liquefaction, and that using the SMR cycle is preferable.
References
[1] Lin L., Gao T., Gu T. et al. CBM liquefaction process integrated with adsorption separation of nitrogen. Energy Sustainability, 2008, vol. 1, pp. 275–282, doi: https://doi.org/10.1115/ES2008-54040
[2] Thakur P.C., Little H.G., Karis W.G. Global coalbed methane recovery and use. Energy Convers. Manag., 1996, vol. 37, no. 6–8, pp. 789–794, doi: https://doi.org/10.1016/0196-8904(95)00257-X
[3] Flores R.M. Coalbed methane: from hazard to resource. Int. J. Coal Geol., 1998, vol. 35, no. 1–4, pp. 3–26, doi: https://doi.org/10.1016/S0166-5162(97)00043-8
[4] Bibler C.J., Marshall J.S., Pilcher R.C. Status of worldwide coal mine methane emissions and use. Int. J. Coal Geol., 1998, vol. 35, no. 1–4, pp. 283–310, doi: https://doi.org/10.1016/S0166-5162(97)00038-4
[5] O perspektivakh dobychi v Rossii ugolnogo gaza [On prospects of coal gas production in Russia]. gazprom.ru: website. URL: https://www.gazprom.ru/about/production/extraction/metan/ (accessed: 15.06.2022). (In Russ.).
[6] Fedorova E.B., Khaydina M.P. LNG production from CBM. Transport na alternativnom toplive [Alternative fuel transport], 2011, no. 6, pp. 71–75. (In Russ.).
[7] Belinskiy A.V., Gayvoronskiy A.I. Puti povysheniya investicionnoj privlekatel’nosti realizacii proektov avtonomnoj gazifikacii regionov Rossijskoj Federacii [Ways to improve the investment attractiveness of the implementation of the autonomous Russian federation regions gasification projects]. Neft, gaz i biznes, 2016, no. 12, pp. 51–55. (In Russ.).
[8] Generalskaya K.V. Secrets of coal methane production and processing in Russia. Dobyvayushchaya promyshlennost, 2017, no. 4, pp. 50–57. (In Russ.).
[9] Parmuzin P.N. Zarubezhnyy i otechestvennyy opyt osvoeniya resursov metana ugolnykh plastov [Foreign and native experience of methane resources development from coal beds]. Ukhta, UGTU Publ., 2017. 109 p. (In Russ.).
[10] Feasibility study of coal bed methane production in china energy and environment programme. Europe-Aid/120723/D/SV/CN. Beijing, China University of Petroleum, 2008. 238 p.
[11] World LNG report. IGU, 2021. 109 p.
[12] Small scale LNG. 2012–2015 triennium work report. IGU, 2015. 84 p.
[13] Roberts M., Chen F., Saygi-Arslan O. Brayton refrigeration cycles for small-scale LNG. Gas processing. 2015, pp. 27–32.
[14] Roberts M.J. Reducing LNG capital cost in today’s competitive environment. 14th Int. Conf. and Exhibition on LNG, 2004, pp. 2–6.
[15] Bukowski J., Liu Y., Pillarella M.R. et al. Natural gas liquefaction technology for FLNG facilities. 16th Int. Conf. and Exhibition on LNG, 2010. URL: https://www.gti.energy/wp-content/uploads/2018/12/12-4-Justin_Bukowski-LNG17-Paper.pdf (accessed: 15.06.2022).
[16] Balascak L., Healey D., Miller W., Trautmann S. Air Products’ technologies for small scale LNG. In: Small Scale LNG. Oslo, 2011.
[17] Bronfenbrenner J.C., Miller W. On a smaller scale. LNG, 2008, pp. 64–70.
[18] Bauer H.C. StarLNG (TM): a family of small-to-mid-scale LNG processes. URL: https://www.researchgate.net/publication/277190844_StarLNG_TM_a_Family_of_Small-to-Mid-Scale_LNG_Processes (accessed: 15.06.2022).
[19] Akopyan A.S., Gayvoronskiy A.I., Gorbunov M.V. Solving gasification problems of far regions in Russian Federation at the example of Sakhalin region. Nauka i tekhnika v gazovoy promyshlennosti [Science and Technology in the Gas Industry], 2022, no. 2, pp. 80–93. (In Russ.).
[20] Turton R., Shaeiwitz J.A., Bhattacharyya D. et al. Whiting analysis, synthesis, and design of chemical process. Prentice Hall, 2018. 1520 p.
[21] He T., Liu Z., Ju Y. et al. A comprehensive optimization and comparison of modified single mixed refrigerant and parallel nitrogen expansion liquefaction process for small-scale mobile LNG plant. Energy, 2019, vol. 167, pp. 1–12, doi: https://doi.org/10.1016/j.energy.2018.10.169
[22] Mishra M., Sarangy S.K. Optimum design of crossflow plate-fin heat exchangers through genetic algorithm. International Journal of Heat Exchangers, 2004, vol. 5, no. 2, pp. 379–401.
[23] Bejan A., Tsatsaronis G., Moran M. Thermal design & optimization. Wiley, 1995. 560 p.
[24] Towler G., Sinnott R. Chemical Engineering Design. Butterworth-Heinernam, 2012. 1320 p.