Justification of the Working Medium Model Selection for Calculation of Dynamic Parameters of Pneumohydraulic Systems
Authors: Chernyshev A.V., Kyurdzhiev Y.V., Atamasov N.V., Lebedev A.V. | Published: 08.10.2018 |
Published in issue: #9(702)/2018 | |
Category: Energy and Electrical Engineering | Chapter: Vacuum and Compressor Technology and Pneumatic Systems | |
Keywords: pneumatic system, equation of state, real gas, Dupré — Abel equation, Van der Waals equation, Redlich-Kwong equation |
This article presents the research of properties of pneumohydraulic system models based on various equations of state. An analysis of the approaches applied to the selection of the research methods is performed, and the existing shortcomings are revealed. It is shown how the use of different equations of state (Dupre-Abel, Van der Waals, Redlich-Kwong, ideal gas) affects the accuracy of calculation of vessel filling time. For the constant volume cavity, the time of filling with gas under pressure through a hole of a constant area to the required pressure is determined in various ways. The research results are presented on an experimental stand, consisting of two vessels of 0.01 m3 and 0.003 m3, connected by a short pipeline (air with a pressure of 26 MPa is used as a working medium). The calculation and the experimental data is compared. Conclusions about the Redlich-Kwong equation of state as the most suitable for calculating the vessel filling time are made based on the theoretical and experimental studies.
References
[1] Elagin M.Yu. Matematicheskoe modelirovanie nestatsionarnyh protsessov v otkrytyh termodinamicheskih sistemah [Mathematical modeling of unsteady processes in open thermodynamic systems]. Tula, TulSU publ., 1999. 112 p.
[2] Oparin D.M. Razrabotka avtomatizirovannoy sistemy postroeniya informatsionnyh modeley protsessov upravleniya pnevmosistemami na baze ob"ektno-orientirovannogo podhoda. Diss. kand. tekh. nauk [Development of an automated system for building information models of pneumatic systems control processes based on object-oriented approach. Cand. tech. sci. diss.]. Vladimir, 2002. 252 p.
[3] Nikishkin S.I., Kotov V.V. Vybor matematicheskogo obespecheniya dlya ucheta svoystv real’nogo gaza pri avtomatizirovannom proektirovanii sistem gazosnabzheniya [Selection of mathematical software for account of real gas properties at automated engineering of gas systems]. Monitoring. Nauka i tekhnologii [Monitoring. Science and technology]. 2016, no. 2, pp. 84–93.
[4] Pavlovskiy V.A. Vvedenie v termodinamiku real’nyh gazov [Introduction to thermodynamics of real gases]. St. Petersburg, Krylov State Research Centre publ., 2013. 230 p.
[5] Polivtsev V.P., Polivtsev V.V., Mosin E.E. Issledovanie bystroprotekayushchego protsessa napolneniya szhatym vozduhom emkosti postoyannogo ob"ema [Study of the high-speed process of filling a constant volume container with compressed air]. Vestnik SevGTU [Bulletin SevSTU]. 2013, is. 14, pp. 67–72.
[6] Podchufarov B.M., Podchufarov Yu.B. Teplomekhanika [Heat mechanics]. Tula, TPI publ., 1975. 103 p.
[7] Ryazanov A.A. Krany sharovye dlya pnevmogidravlicheskih sistem. Osnovy proektirovaniya [Ball valves for pneumatic and hydraulic systems. Design basics]. Moscow, Mashinostroenie publ., 2011. 152 p.
[8] Arzumanov Yu.L., Halatov E.M., Chekmazov V.I., Chukanov K.P. Matematicheskie modeli sistem pnevmoavtomatiki [Mathematical models of pneumatic systems]. Moscow, Bauman Press, 2009. 296 p.
[9] Chernyshev A.V., Atamasov N.V. Rekomendatsii po modelirovaniyu protsessov istecheniya v pnevmaticheskih sistemah s uchetom svoystv real’nogo gaza na osnove bezrazmernyh kriteriev [Selection of mathematical models for discharge process in pneumatic systems with the assumption of the real gas using dimensionless criteria]. Kompressornaya tekhnika i pnevmatika [Compressors and Pneumatics]. 2017, no. 3, pp. 19–23.
[10] Mithun S., Mariappa S., Suresh Gayakwad. Modeling and simulation of pneumatic brake system used in heavy commercial vehicle. Journal of Mechanical and Civil Engineering, 2014, vol. 11, is. 1, ver. 2, pp. 1–9.
[11] Dutton J.C., Coverdill R.E. Experiments to Study the Gaseous Discharge and Filling of Vessels. International Journal of Engineering Education, 1997, vol. 13, no. 2, pp. 123–134.
[12] Thorncroft G., Patton J.S., Gordon R. Modeling Compressible Air Flow in a Charging or Discharging Vessel and Assessment of Polytropic Exponent. ASEE Annual Conference and Exposition, Conference Proceedings, 2007. 18 p.
[13] Aakenes F. Frictional pressure-drop models for steady-state and transient two-phase flow of carbon dioxide. Master of Science in Product Design and Manufacturing, Norwegian University of Science and Technology, 2012. 124 p.
[14] Tugolukov E.N., Egorov E.S. Metodika matematicheskogo modelirovaniya termodinamicheskih protsessov porshnevogo kompressora [Methods of mathematical modeling of thermodynamic processes of piston compressor]. Vestnik Astrahanskogo gosudarstvennogo tekhnicheskogo universiteta. Ser. Upravlenie, vychislitel’naya tekhnika i informatika [Vestnik of Astrakhan State Technical University. Series: Management, Computer Science and Informatics]. 2014, no. 1, pp. 45–53.
[15] Pavlovskiy V.A., Chistov A.L. Modelirovanie dinamiki zapolneniya rezervuara real’nym gazom [Modeling of real gas tank fill-up dynamics]. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaya matematika. Informatika. Protsessy upravleniya [Vestnik SPbSU. Applied Mathematics. Computer Science. Control Processes]. 2014, no. 3, pp. 46–57.