A Study of Testing Procedures of Vaned Diffusers of a Centrifugal Compressor Stage in a Virtual Wind Tunnel
Authors: Petukhov E.P., Galerkin Y.B., Rekstin A.F. | Published: 14.08.2019 |
Published in issue: #8(713)/2019 | |
Category: Energy and Electrical Engineering | Chapter: Vacuum and Compressor Technology and Pneumatic Systems | |
Keywords: vane diffuser, centrifugal compressor stage, CFD calculation, efficiency, turbulence model |
A mathematical model of a vaned diffuser of a centrifugal compressor stage can be constructed based on the results of mass CFD-calculations, similar to that of vaneless diffusors. The methods for calculating the annular cascade and the straight cascade differ due to the existence of vaneless diffusor sections in front of the cascade and behind it. The rational dimensions of these sections are determined. The calculations of two-dimensional cascades without restricting walls appear to be irrational. The calculation is effective for a sector with one vane channel, a moderate number of cells, and the turbulence model k–ε. Averaging the flow parameters at the blade cascade exit leads to ambiguous results. To calculate the characteristics of the blade cascade, the parameters in a section with a diameter equal to 1.85 of the diameter of the blade cascade exit should be used. In domestic and foreign literature, it is customary to emphasize the effectiveness of the CFD methods that replace physical experiments. Calculations of the compressor stages are called virtual rig testing, while those of the blade cascade are known as virtual wind tunnel testing. To study stationary flow, as a virtual wind tunnel, it suffices to consider the blade cascade itself, the preceding and the subsequent vaneless spaces.
References
[1] Seleznev K.P., Galerkin Yu.B. Tsentrobezhnyye kompressory [Centrifugal compressors]. Leningrad, Mashinostroyeniye publ., 1982. 271 p.
[2] Khisameyev I.G., Maksimov V.A., Batkis G.S., Guzel’bayev Ya.Z. Proyektirovaniye i ekspluatatsiya promyshlennykh tsentrobezhnykh kompressorov [Design and operation of industrial centrifugal compressors]. Kazan, FEN publ., 2012. 671 p.
[3] Lunev A.T. The structure of the design and testing of the flow part of the blowers for pumping natural gas. Kompressornaya tekhnika i pnevmatika, 2001, no. 10, pp. 4–7 (in Russ.).
[4] Lunev A.T. Razrabotka vysokoeffektivnykh smennykh protochnykh chastey tsentrobezhnykh kompressorov gazoperekachivayushchikh agregatov. Kand. Diss. [Development of highly efficient replacement parts for centrifugal compressors of gas pumping units. Cand. Diss.]. Kazan, 2005. 123 p.
[5] Japikse D., Krivitzky E.M. Radial stages with non-uniform pressures at diffuser inlet. Proceedings of the ASME Turbo Expo, Seoul, South Korea, 13–17 June 2016, vol. 2D-2016, paper no. GT2016-57956, pp. V02DT42A034, doi: 10.1115/GT2016-57956
[6] Japikse D. Turbomachinery design with an agile engineering system. JSME fluid engineering conference, Osaka, 19–20 September, 2003, pp. 19–20.
[7] Galerkin Yu.B. Turbokompressory [Turbochargers]. Sankt-Petersburg, KKHT publ., 2010. 650 p.
[8] Galerkin Y., Soldatova K., Drozdov A. Modern state of the universal modeling for centrifugal compressors. International Journal of Industrial and Manufacturing Engineering, 2015, vol. 9, no. 1, pp. 150–156.
[9] Soldatova K.V. Sozdaniye novoy matematicheskoy modeli protochnoy chasti tsentrobezhnykh kompressorov i bazy dannykh model’nykh stupeney. Dokt. Diss. [Creating a new mathematical model of the flow section of centrifugal compressors and a database of model stages. Doct. Diss.]. Sankt-Petersburg, 2017. 357 p.
[10] Soldatova К. The application of mathematical models for industrial centrifugal compressor optimal design. ICCMS 2018: 10th International Conference on Computer Modeling and Simulation, Australia, Sydney, 2018, paper ID 008.
[11] Galerkin Yu.B., Solov’yeva O.A. Improvement of vaneless diffuser calculations based on CFD experiment. Kompressornaya tekhnika i pnevmatika, 2014, no. 3, pp. 35–41 (in Russ.).
[12] Galerkin Yu.B., Solov’yeva O.A. Improvement of vaneless diffuser calculations based on CFD experiment. Part II. Kompressornaya tekhnika i pnevmatika, 2014, no. 4, pp. 15–21 (in Russ.).
[13] Rekstin A.F., Drozdov A.A., Solovyeva O.A., Galerkin Y.B. Two mathematical models centrifugal compressor stage vaneless diffuser comparison. AIP Conference Proceedings, 2007, vol. 2007, iss. 1, doi: https://doi.org/10.1063/1.5051896
[14] Galerkin Y., Solovieva O. Flow behavior and performances of centrifugal compressor stage vaneless diffusers. International Journal of Industrial and Manufacturing Engineering, 2015, vol. 9, no. 01, pp. 129–133.
[15] Podobuyev Yu.S., Seleznev K.P. Teoriya i raschet osevykh i tsentrobezhnykh kompressorov [Theory and calculation of axial and centrifugal compressors]. Moscow, Leningrad, Mashgiz publ., 1957. 390 p.
[16] Komarov A.P. Investigation of flat compressor grids. Lopatochnyye mashiny i struynyye apparaty. Sb. st. [Blade machines and jet apparatus. Digest of articles]. Moscow, 1967, iss. 2, pp. 67–110 (in Russ.).
[17] Harley P., Spence S., Filsinger D., Dietrich M., Early J. Meanline modeling of inlet recirculation in automotive turbocharger centrifugal compressors. Journal of Turbomachinery, 2014, vol. 137, 011007-1, doi: 10.1115/1.4028247
[18] Harley P., Spence S., Filsinger D., Dietrich M., Early J. Experimental and numerical benchmarking of an improved meanline modelling method for automotive turbocharger centrifugal compressors. Proceedings of ASME Turbo Expo 2015, Turbine Technical Conference and Exposition GT2015, 15–19 June, 2015, Montréal, Canada, doi: https://doi.org/ 10.1115/GT2015-42175
[19] Elfert M., Weber A., Wittrock D., Peters A., Voss C., Nicke E. Experimental and numerical verification of an optimization of a fast rotating high performance radial compressor impeller. Proceedings of ASME Turbo Expo 2016, Turbomachinery Technical Conference and Exposition GT2016, 13–17 June 2016, Seoul, South Korea, GT2016-56546, doi: 10.1115/GT2016-56546
[20] Xinqian Z., Meijie Z. Criteria for the Matching of Inlet and Outlet Distortions in Centrifugal Compressors. Applied Thermal Engineering, 2018, vol. 131, pp. 933–946, doi: 10.1016/j.applthermaleng.2017.11.140
[21] Marechale R., Ji M., Cave M. Experimental and numerical investigation of labyrinth seal clearance impact on centrifugal impeller performances. Proceedings of the ASME Turbo Expo, 2015, vol. 2C, doi: 10.1115/GT2015-43778
[22] Meduri U.K., Selvam K., Nawrocki G. CFD analysis of centrifugal compressor stage range extension using internal flow recirculation. Proceedings of the ASME Turbo Expo, 2015, vol. 2C, doi: 10.1115/GT2015-42592
[23] Wilcox D.C. Turbulence Modeling for CFD. DCW Industries, Inc., La Canada CA, 2006. 522 p.