Selecting the Dimensions of the Vaneless Diffuser of a Centrifugal Compressor Stage at the Primary Design Phase
Authors: Galerkin Y.B., Rekstin A.F., Solovyeva O.A. | Published: 28.10.2019 |
Published in issue: #10(715)/2019 | |
Category: Energy and Electrical Engineering | Chapter: Vacuum and Compressor Technology and Pneumatic Systems | |
Keywords: centrifugal compressor stage, primary design, vaneless diffuser, work coefficient, impeller, flow rate coefficient |
The advances in the primary design method of centrifugal compressors of the Universal Modeling Method have led to the need to analyze and revise the recommendations for the optimal size and configuration selection of vaneless diffusers of centrifugal compressor stages. The results of CFD calculations of a family of vaneless diffusers with different relative width, radial length, velocity coefficients and flow angles at the inlet are used to develop new recommendations. The choice of the optimal width of the vaneless diffuser is based on ensuring a non-separable flow in it at the boundary of the surge. The optimal value of the relative radial length of the diffuser is in the range of 1.65–2.0. Considering the above, a formula for selecting the vaneless diffuser outer diameter is proposed depending on the design flow rate coefficient. The developed primary design method of vaneless diffusers is included in the software programs of the Universal Modeling Method and is used in design and research practice.
References
[1] Hazby H., Casey M., Robinson C., Spataro R., Lunacek O. The design of a family of process compressor stages. Proceedings of 12th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC12, 3–7 April 2017, Stockholm, Sweden, paper ID ETC2017-134.
[2] Rossbach T., Rube C., Wedeking M., Franz H., Jeschke P. Performance measurements of a full-stage centrifugal process gas compressor test rig. Proceedings of 11th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC11, 23–27 March, 2015, Madrid, Spain, code 112514.
[3] Galerkin Yu.B., Rekstin A.F., Soldatova K.V., Drozdov A.A., Popov Yu.A. Development of the scientific school of turbo kompressorostroyenia LPI-SPbPU Peter the Great, the results of cooperation with compressor builders. 17 Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya po kompressornoy tekhnike [17 International scientific and technical conferences on compressor technology]. Kazan, 2017, pp. 19–29 (in Russ.).
[4] Vasil’ev Yu.S., Rodionov P.I., Sokolovskiy M.I. Highly efficient centrifugal compressors of a new generation. The scientific basis of calculation, the development of methods for optimal design and development of production. Nauka i promyshlennostʹ Rossii, 2000, no. 10–11, pp. 78–85 (in Russ.).
[5] Galerkin Y., Drozdov A. New generation of Universal modeling for centrifugal compressors calculation. International Conference on Compressors and their Systems, City University, UK, 2015, vol. 90, conference 1, doi: 10.1088/1757-899X/90/1/012040
[6] Soldatova K.V. New Loss Model of Universal Modeling Method Verification by Plant Test of Centrifugal Compressors. Kompressornaya tekhnika i pnevmatika, 2016, no. 7, pp. 1–25 (in Russ.).
[7] Galerkin Y., Soldatova K., Drozdov A. Modern state of the universal modeling for centrifugal compressors. International Conference on Numerical Methods in Industrial Processes. World Academy of science, engineering and technology, Paris, 2015, vol. 9, no. 01, no. 242.
[8] Galerkin Y., Soldatova K., Drozdov A. New version of the universal modelling for centrifugal compressor gas dynamic design. 22nd International Compressor Engineering Conference at Purdue, 14–17 July, 2014, Purdue University. Available at: https://docs.lib.purdue.edu/ icec/2275/ (accessed 14 December 2018).
[9] Lunev A.T. Structure of the method of design and testing of the flow part of superchargers for natural gas pumping. Kompressornaya tekhnika i pnevmatika, 2001, no. 10, pp. 4–7 (in Russ.).
[10] Lunev A.T., Vyachkilev O.A., Drozdov Yu.V. Design of centrifugal compressor stages based on a mathematical model. Proektirovanie i issledovanie kompressornyh mashin: sb. statey [Design and research of compressor machines. Collected papers]. 1997, iss. 3, pp. 53–64 (in Russ.).
[11] Lunev A.T. Razrabotka vysokoehffektivnykh smennykh protochnykh chastey tsentrobezhnykh kompressorov gazoperekachivayushchikh agregatov. Kand. Diss. [Development of high-efficiency replaceable flow parts of centrifugal compressors of gas pumping units. Cand. Diss.]. Kazan, 2005. 123 p.
[12] Japikse D. Design system development for turbomachinery (turbopump) designs and a decade beyond. JANNAF Conference, Cleveland, Ohio, 15 –17 July 1998, pp. 263–275.
[13] Japikse D. Agile design system in the age of concurrent engineering. JANNAF Conference, Albuquerque, December, 1996, pp. 331–345.
[14] Japikse D., Bitter J. Effective two-zone modeling of diffusers and return channel systems for radial and mixed-flow pumps and compressors. Proceedings of the 11th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, 2006, vol. 2, pp. 511–520.
[15] Seleznev K.P., Galerkin Yu.B. Tsentrobezhnye kompressory [Centrifugal compressor]. Leningrad, Mashinostroenie publ., 1982. 271 p.
[16] Galerkin Yu.B. Turbokompressory. Rabochiy protsess, raschet i proektirovanie protochnoy chasti [Turbochargers. Workflow, calculation and design of flow part]. Moscow, KKHT publ., 2010. 596 p.
[17] Rekstin A.F., Popova E.Yu., Utsekhovskiy A.A. Analysis of the efficiency of centrifugal compressor stages using approximate algebraic equations. Kompressornaya tekhnika i pnevmatika, 2018, no. 1, pp. 33–40 (in Russ.).
[18] Livshits S.P. Aehrodinamika tsentrobezhnykh kompressornykh mashin [Aerodynamics of centrifugal compressor machines]. Moscow, Leningrad, Mashinostroenie publ., 1966. 340 p.
[19] Soldatova K.V. Sozdanie novoy matematicheskoy modeli protochnoy chasti tsentrobezhnykh kompressorov i bazy dannykh model’nykh stupeney. Dokt. Diss. [Creation of a new mathematical model of the flow section of centrifugal compressors and a database of model stages. Doct. Diss.]. Sankt-Petersburg, 2017. 357 p.
[20] Galerkin Yu.B., Drozdov A.A. Optimization of a centrifugal compressor stage with axial-radial impeller. Nauchno-tekhnicheskie vedomosti SPbGPU, 2015, no. 4(231), pp. 179–188 (in Russ.), doi: 10.5862/JEST.231.19
[21] Galerkin Yu.B., Solov’eva O.A. Improvement of vaneless diffuser calculations based on CFD experiment. Kompressornaya tekhnika i pnevmatika, 2014, no. 3, pp. 35–41 (in Russ.).
[22] Galerkin Yu.B., Solov’eva O.A. Improvement of vaneless diffuser calculations based on CFD experiment. Part II. Kompressornaya tekhnika i pnevmatika, 2014, no. 4, pp. 15–21 (in Russ.).
[23] Galerkin Yu.B. Design Issues for Natural Gas Centrifugal Compressor Flow Modules. Kompressornaya tekhnika i pnevmatika v XXI veke. Trudy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii po kompressorostroeniyu [Compressors and pneumatics in the XXI century. Proceedings of the International Scientific and Technical Conference on Compressor Construction]. 2004, Ukraine, Sumy, vol. 2, pp. 166–188 (in Russ.).
[24] Sorokes J.M., Nye D.A., D’Orsi N., Broberg R. Sidestream optimization through the use of computational fluid dynamics and model testing. Texas A&M University, Turbomachinery Laboratories. Available at: http://hdl.handle.net/1969.1/163350, doi: https://doi.org/ 10.21423/R1QS8R
[25] Galerkin Yu.B., Soldatova K.V. Loading Factor Performance of a Centrifugal Compressor Impeller. Specific Features and Way of Modeling. Kompressornaya tekhnika i pnevmatika, 2016, no. 1, pp. 24–34.
[26] Galerkin Yu.B., Rekstin A.F., Soldatova K.V., Drozdov A.A. Al’ternativnyy sposob rascheta kharakteristiki koehffitsienta teoreticheskogo napora tsentrobezhnogo kompressornogo kolesa. Kompressornaya tekhnika i pnevmatika, 2016, no. 6, pp. 11–19 (in Russ.).
[27] Ris V.F. Tsentrobezhnyye kompressornyye mashiny [Centrifugal compressor machines]. Leningrad, Mashinostroyeniye publ., 1981. 351 p.
[28] Rekstin A.F., Drozdov A.A., Solovyeva O.A., Galerkin Y.B. Two mathematical models centrifugal compressor stage vaneless diffuser comparison. AIP Conference Proceedings, 2018, vol. 2007, art. no. 030035, doi: https://doi.org/10.1063/1.5051896