Theoretical Estimation of Thermal Deformations of Non-Lubricated Bearings of Low-Flow Turbocharger Units
Authors: Raykovskiy N.A., Yusha V.L., Tretyakov A.V., Zakharov V.A. | Published: 28.10.2019 |
Published in issue: #10(715)/2019 | |
Category: Energy and Electrical Engineering | Chapter: Vacuum and Compressor Technology and Pneumatic Systems | |
Keywords: non-lubricated bearing, low-flow turbine unit, numerical method, thermal state, temperature deformation |
When designing turbocharger units (microturbines) working with high-temperature flows, it is possible to completely abandon lubrication system and use self-lubricating bearings instead. At the same time, it is important to ensure the required temperature regimes and permissible temperature deformations. Currently, there are no calculation methods that could be used to determine the temperature fields and temperature deformations of the ‘rotor — self-lubrication bearings’ system. The paper proposes a numerical method for calculating bearing assemblies, which takes into account the mutual influence of the operating modes of the turbine unit and the bearing cooling system. The proposed method is tested, and the results of the analysis of temperatures and temperature deformations are presented.
References
[1] Quoilin S., Broek M.V.D., Declaye S., Dewallef P., Lemort V. Techno-economic survey of organic rankine cycle (ORC) systems. Renewable Sustainable Energy Reviews, 2013, vol. 22, pp. 168–186, doi: 10.1016/j.rser.2013.01.028
[2] Freeman J., Hellgardt K., Markides C.N. An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications. Applied Energy, 2015, vol. 138, pp. 605–620, doi: 10.1016/j.apenergy.2014.10.035
[3] Kaltschmitt M., Streicher W., Wiese A. Renewable Energy: Technology, Economics and Environment. Berlin, Springer Science & Business Media, 2007. 596 p.
[4] Milewski J., Krasucki J. Comparison of ORC and Kalina cycles for waste heat recovery in the steel industry. Journal of power technologies, 2017, vol. 97(4), pp. 302–307.
[5] Yang Y.C., Chu S.S., Chang W.J., Wu T.-S. Estimation of heat flux and temperature distributions in a composite strip and homogeneous foundation. International Communications in Heat and Mass Transfer, 2010, vol. 37, pp. 495–500, doi: 10.1016/ j.icheatmasstransfer.2010.02.005
[6] Chen W.L., Yang Y.C., Chu S.S. Estimation of heat generation at the interface of cylindrical bars during friction process. Applied Thermal Engineering, 2009, vol. 29(2–3), pp. 351–357, doi: 10.1016/j.applthermaleng.2008.03.001
[7] Zarubin V.S., Kuvyrkin G.N. Matematicheskiye modeli mekhaniki i elektrodinamiki sploshnoy sredy [Mathematical models of continuum mechanics and electrodynamics]. Moscow, Bauman Press, 2008. 512 p.
[8] Isachenko V.P., Osipova V.A., Sukomel A.S. Teploperedacha [Heat transfer]. Moscow, Energoizdat publ., 1981. 416 p.
[9] Zysina-Molozhen L.M., Zysin L.V., Polyak M.P. Teploobmen v turbomashinakh [Heat exchange in Turbomachinery]. Leninigrad, Mashinostroyeniye publ., 1974. 336 p.
[10] Kreith F., Boehm R.F., Raithby G.D. Heat and Mass Transfer. Boca Raton, CRC Press LLC, 1999. 288 p.
[11] Raykovskiy N.A., Yusha V.L., Tretyakov A.V., Zyrin A.G. Development of a numerical method for studying heat exchange and temperature fields in a self-lubricating turbocharger bearing under cooling. AIP Conference Proceedings, 2018, vol. 2007, pp. 030059-1–030059-6, doi: 10.1063/1.5051920
[12] Raykovskiy N.A., Tretyakov A.V., Abramov S.A., Nazmeev F.G., Pavlichev S.V. The technique of numerical research of cooling medium flow in the water jacket of self-lubricated bearing. AIP Conference Proceedings, 2017, vol. 1876, pp. 020031-1-020031-6, doi: 10.1063/ 1.4998851
[13] Birger I.A., Mavlyutov R.R. Soprotivleniye materialov [Strength of materials]. Moscow, Nauka publ., 1986. 560 p.
[14] Markov M.A., Snimshchikov D.V., Krasikov A.V. Tribological express-studies of wear resistant Аl2О3-based ceramics with SiC fibers against steel friction pair. Inorganic Materials: Applied Research, 2016, no. 3, pp. 97–103 (in Russ.).
[15] Kreyts F., Khauell Dzh.R., Dzhordan D.P., Kreyts F., T’yen K.L., Klark D.A. Konvektivnyy teploobmen vo vrashchayushchikhsya sistemakh. Uspekhi teploperedachi [Convective heat transfer in rotating systems. Heat transfer success]. Moscow, Mir publ., 1971. 169 p.
[16] Dorfman L.A. Gidrodinamicheskoye soprotivleniye i teplootdacha vrashchayushchikhsya tel [Hydrodynamic resistance and heat transfer of rotating bodies]. Moscow, Fizmatgiz publ., 1960. 260 p.
[17] Chichinadze A.V., Levin A.L., Borodulin M.M., Zinov’yev E.V. Polimery v uzlakh treniya mashin i priborov [Polymers in friction units of machines and devices]. Moscow, Mashinostroyeniye publ., 1988. 328 p.
[18] Spravochnik po tribotekhnike. V 3 t. T. 3. Tribotekhnika antifriktsionnykh, friktsionnykh i stsepnykh ustroystv. Metody i sredstva tribotekhnicheskikh ispytaniy [Handbook of tribotechnology. In 3 vol. Vol. 3. Tribotechnika anti-friction, friction and coupling devices. Methods and means of tribological tests]. Ed. Khebda M., Chichinadze A.V. Moscow, Mashinostroyeniye publ., 1992. 730 p.
[19] Raykovskiy N.A., Yusha V.L., Tret’yakov A.V., Zakharov V.A., Kuznetsov K.I. The method for studying temperature deformations of self-lubricating bearing friction units of high-temperature low-flow turbine. The Journal Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering, 2019, vol. 3, no. 2, pp. 51–61 (in Russ.).