Classification of Vortex Jet Devices for Gas Flow Control in Pneumo-Hydraulic Systems
Authors: Uss A.Y., Chernyshev A.V. | Published: 01.08.2020 |
Published in issue: #7(724)/2020 | |
Category: Energy and Electrical Engineering | Chapter: Vacuum and Compressor Technology and Pneumatic Systems | |
Keywords: shut-off and control valves, vortex jet device, pressure control valve, gas flow regulator, vortex valve |
This article presents a review and analysis of the literature on the development and study of vortex jet devices that are used as control valves employing the principle of the vortex flow of the working medium. The article discusses vortex valves without mechanically moving parts, as well as semi-mechanical vortex valves. The principle of operation of a vortex jet device is described and, for the first time, a classification of vortex jet devices by a number of structural and functional features is carried out. The analysis of technical solutions identifies the advantages and disadvantages of vortex jet devices. Recommendations are given for selecting a structure diagram of a vortex jet device.
References
[1] Levitsky M.P., Levitsky S.P. On the development of a regulating valve design with improved cavitational characteristics. HAIT Journal of Science and Engineering B, 2006, vol. 3, pp. 1–16.
[2] Levitsky M. Control vortex valve. Patent no. WO 02/050456 A2, 2002.
[3] Zalmanzon L.A. Teoriya elementov pnevmoniki [Pneumatic elements theory]. Moscow, Nauka publ., 1969. 508 p.
[4] Lebedev I.V., Treskunov S.L., Yakovenko V.S. Elementy struynoy avtomatiki [Elements of jet automation]. Moscow, Mashinostroyeniye publ., 1973, pp. 289–314.
[5] Popov D.N. Research and calculation of inkjet elements and circuits of automatic control systems. Trudy MVTU, 1977, no. 244. 79 p (in Russ.).
[6] Uss A.Yu., Chernyshev A.V. The Development of the Vortex Gas Pressure Regulator. Procedia Engineering, 2016, vol. 152. pp. 380–388, doi: 10.1016/j.proeng.2016.07.718
[7] Uss A.Yu., Chernyshyov A.V., Krylov V.I. Development of Gas Pressure Vortex Regulator. AIP Conference Proceedings, 2017, vol. 1876, no. 020025, doi: 10.1063/1.4998845
[8] Uss A.Yu., Atamasov N.V., Chernyshev A.V. Development of the Calculation Method and Designing of a Vortex Jet Device for Gas Flow Regulation Purposes. AIP Conference Proceedings, 2019, vol. 2141, no. 030028, doi: 10.1063/1.5122078
[9] Belova O.V., Starodubtsev A.A., Chernyshev A.V. Calculation of the vortex gas pressure regulator. Engineering Bulletin, 2014, no. 10 (in Russ.). Available at: http://engbul.bmstu.ru/doc/740398.html (accessed 15 February 2020).
[10] Belova O.V., Starodubtsev A.V., Chernyshev A.V. Vortex gas pressure regulator. Engineering Journal: Science and Innovation, 2013, no. 5. Available at: http://www.engjournal.ru/catalog/machin/vacuum/760.html, doi: 10.18698/2308-6033-2013-5-760
[11] Shyji S., Deepu M., Kumar N.A., Jayachandran T. Numerical Studies on Thrust Augmentation in High Area Ratio Rocket Nozzles by Secondary Injection. Journal of Applied Fluid Mechanics, 2017, vol. 10(6), pp. 1605–1614, doi: 10.29252/jafm.73.245.27309
[12] Yu X., He G., Li J., Liu Y., Wei X. Numerical analysis of flow in variable thrust SRM based on vortex valve. Collection of Technical Papers – 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2007, vol. 8, pp. 7865–7870.
[13] Francis J., Birch M.J., Parker D. Computational Fluid Dynamic Studies of Vortex Amplifier Design for the Nuclear Industry-II Transient Conditions. Journal of Fluids Engineering, Transactions of the ASME, 2012, vol. 134(2), no. 021103, doi: 10.1115/1.4005950
[14] Belforte G., Bertetto A.M., Mazza L. Semi-Empirical Study of Water Flow through Vortex Triodes and Performance Optimization. Journal of Fluids Engineering, Transactions of the ASME, 2015, vol. 137(12), no. 121203, doi: 10.1115/1.4031017
[15] Farbos de Luzan C., Villalva R., Felten F., Gutmark E. Computational Study of the Velocity Fields and Pressure Differential in a Reynolds-Number-Sensitive Fluidic Resistor. Flow, Turbulence and Combustion, 2018, vol. 102(1), pp. 221–234, doi: 10.1007/s10494-018-9952-0
[16] Zhang F., Li H., Li N., Zhang N., Lv W., Cui X. A Novel Automatic Phase Selection Device: Design and Optimization. IOP Conference Series: Earth and Environmental Science, 2018, vol. 108(3), no. 032021, doi: 10.1088/1755-1315/108/3/032021
[17] Levitskiy M.P., Levitskaya I.M. About One Inkjet Flow Control Solution. Truboprovodnaya armatura i oborudovaniye, 2018, no. 5, pp. 38–41.
[18] Tanney J.W. Fluidics. Progress in Aerospace Sciences, 1970, vol. 10, pp. 401–509, doi: https://doi.org/10.1016/0376-0421(70)90008-4
[19] Tesar V. Superquadratic behaviour of vortex diodes. Proceedings of the IF AC Symposium, 20–23 May 1980, Warsaw, Poland, Pergamon Press, 1980, pp. 79–95.
[20] Yoder Jr. Graydon L, Elkassabgi Yousri M., De Leon Gerardo I., Fetterly Caitlin N., Ramos Jorge A., Cunningham Richard Burns. Vortex Diode Analysis and Testing for Fluoride Salt-Cooled High-Temperature Reactors. Available at: https://info.ornl.gov/sites/publications/files/Pub32971.pdf (accessed 15 February 2020), doi: 10.2172/1036568
[21] Kotowski A., Wojtowicz P. Analysis of Hydraulic Parameters of Conical Vortex Regulators. Polish Journal of Environmental Studies, 2010, vol. 19(4), pp. 749–756.
[22] Wojtowicz P., Kotowski A. Influence of design parameters on throttling efficiency of cylindrical and conical vortex valves. Journal of Hydraulic Research, 2009, vol. 47(5), pp. 559–565, doi: 10.3826/jhr.2009.3449
[23] Tesar V. Fluidic Control of Molten Metal Flow. Acta Polytechnica, 2003, vol. 43, no. 112003, pp. 15–22.
[24] Sokolovskiy G.P., Levitskiy M.P., Fedyakov A.E. Vikhrevoy usilitel’ [Vortex amplifier]. Copyright Certificate USSR no. 1305457 A1, 1987.
[25] Denisov A.A., Nagornyy V.S., Limarev V.P., Vlasov V.V. Vikhrevoy usilitel’ [Vortex amplifier]. Copyright Certificate USSR no. 744155, 1980.
[26] Tesar V. Airfoil cascades with bistable separation control. WIT Transactions on Engineering Sciences, 2010, vol. 69, pp. 331–343, doi: 10.2495/AFM100291
[27] Tesar V., Broučková Z., Kordík J., Trávníček Z., Peszynski K. Valves with flow control by synthetic jets. EPJ Web of Conferences, 2012, vol. 25, no. 01092, doi: 10.1051/epjconf/20122501092
[28] Tesar V. Pressure-Driven Microfluidics. Chapter 4. Norwood, Artech house, 2007. 224 p.
[29] Gusentsova YA.A., Ivashchenko E.A., Kovalenko A.A., Sokolov V.I., Andreychuk N.D. Vikhrevyye ustroystva v sistemakh ventilyatsii [Vortex devices in ventilation systems]. Lugansk, VNU im. V. Dalya publ., 2006. 259 p.
[30] Lovtsov A.V., Noskov A.S., Syropyatov V.P., Khait A.V. Vikhrevaya truba [Vortex tube]. Patent RF no. 2533590 S2, 2014.
[31] Mefedova Yu.A. Magnitozhidkostnyi vikhrevoy element dlya elektrogidravlicheskikh sistem upravleniya. Kand. Diss. [Magnetoliquid vortex element for electro-hydraulic control systems. Cand. Diss.]. Saratov, SSTU publ., 2008.
[32] Mefedova Yu.A., Vlasov A.V., Vlasov V.V. Electrohydraulic vortical regulating element with the magnetic liquid sensor control. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta, 2007, no. 1(21), pp. 63–69 (in Russ.).
[33] Mefedova Yu.A., Vlasov A.V., Vlasov V.V. Vikhrevoy klapan [Swirl valve]. Patent RF no. 2347117 S2, 2009. 5 p.
[34] Parkhimovich A.Yu., Solov’yev A.A. Study of the experimental characteristics of the vortex controller. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2006, vol. 8, no. 4, pp. 13–15 (in Russ.).
[35] Gurin S.V., Solov’yev A.A. Investigation of the possibility of obtaining an isothermal process during throttling in a vortex gas pressure regulator. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2006, vol. 8, no. 4, pp. 3–6 (in Russ.).
[36] Bakirov F.G., Akhmetov Yu.M., Solov’yev A.A., Gurin S.V., Parkhimovich A.Yu. Experience of the quasi isothermal reduction realization in vortex pressure regulators of energetic systems. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2007, vol. 9, no. 6, pp. 66–74 (in Russ.).
[37] Cho J.O., Lee J.I., Bang Y.S., Yoob S.H. Comparison of Different Safety Injection Tank Models in MARS-KS. Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, 18–19 May, 2017.
[38] Bondarenko V.V. Mel’nikov V.S. Makeyev V.A. Gidravlicheskiy vikhrevoy regulyator [Hydraulic swirl regulator]. Patent RF no. 54441, 2006.