Primary Design of Vaneless Diffusers of Centrifugal Compressor Stages by the Universal Modeling Method
Authors: Solovyeva O.A., Soldatova K.V., Galerkin Y.B., Rekstin A.F. | Published: 27.02.2021 |
Published in issue: #3(732)/2021 | |
Category: Energy and Electrical Engineering | Chapter: Vacuum and Compressor Technology and Pneumatic Systems | |
Keywords: centrifugal compressor stage, primary design, vaneless diffuser, flow coefficient, stage efficiency, surge limit |
Vaneless diffusers of industrial centrifugal compressors most often consist of a tapered inlet section and a parallel-walled main section. The study proposes to choose such a width of the main section, at which the flow in the diffuser remains unseparated at the surge limit. To implement the primary design method, an empirical formula was obtained to determine the minimum continuous flow angle depending on the relative width of the diffuser. The primary design of eighteen stages was completed, covering a practically important range of parameters. The corresponding gas-dynamic characteristics were calculated by the universal modeling method, the dimensions and angles of the flow were analyzed. The proposed primary design method is integrated into the universal modeling method and is used in design practice.
References
[1] Ris V.F. Tsentrobezhnyye kompressornyye mashiny [Centrifugal compressor machines]. Leningrad, Mashinostroyeniye publ., 1964. 336 p.
[2] Ris V.F. Tsentrobezhnyye kompressornyye mashiny [Centrifugal compressor machines]. Leningrad, Mashinostroyeniye publ., 1981. 351 p.
[3] Den G.N. Mekhanika potoka v tsentrobezhnykh kompressorakh [The mechanics of the flow in centrifugal compressors]. Leningrad, Mashinostroyeniye publ., 1973. 269 p.
[4] Den G.N. Proyektirovaniye protochnoy chasti tsentrobezhnykh kompressorov [Design of the flow part of centrifugal compressors]. Leningrad, Mashinostroyeniye, Leningr. otd-niye publ., 1980. 230 p.
[5] Galerkin Yu.B. Turbokompressory. Rabochiy protsess, raschet i proyektirovaniye protochnoy chasti [Turbochargers. Workflow, calculation and design of the flow section]. Moscow, KKhT publ., 2010. 596 p.
[6] Trudy nauchnoy shkoly kompressorostroyeniya SPbGTU [Proceedings of the scientific school of compressor engineering SPbSTU]. Ed. Galerkin Yu.B. Moscow, KKhT publ., 2000. 443 p.
[7] Seleznev K.P., Galerkin Yu.B. Tsentrobezhnyye kompressory [Centrifugal compressor]. Leningrad, Mashinostroyeniye publ., 1982. 271 p.
[8] Jansen W. Steady fluid flow in a radial vaneless diffuser. Transactions ASME. Journal of basic engineering, 1964, Sept, pp. 607–619.
[9] Johnston J.P., Dean R.C. Losses in vaneless diffusers of centrifugal compressors and pumps. Transactions ASME, Journal of Engineering for Power, 1966, vol. 88, pp. 49–60.
[10] [Solov’yeva O.A., Galerkin Yu.B. The dimensions optimal ratios selection of low flowrate centrifugal compressor stage vaneless diffuser. Kompressornaya tekhnika i pnevmatika, 2017, no. 5, pp. 11–15 (in Russ.).
[11] Solov’yeva O.A., Galerkin Yu.B. Low flow rate centrifugal compressor stage vaneless diffuser analysis. Kompressornaya tekhnika i pnevmatika, 2017, no. 3, pp. 10–13 (in Russ.).
[12] Livshits S.P. Aerodinamika tsentrobezhnykh kompressornykh mashin [Aerodynamics of centrifugal compressor machines]. Moscow, Leningrad, Mashinostroyeniye publ., 1966, pp. 335–337.
[13] Cumpsty N. Compressor Aerodynamics. New York, Longman Scientific & Technical, 1990. 517 p. (Russ. Ed.: Kampsti N. Aerodinamika kompressorov. Moscow, Mir publ., 2000. 688 p.).
[14] Aungier R.H. Centrifugal compressors: a stragedy for aerodynamic design and analysis. New York, ASME Press, 2000. 320 p.
[15] Nuzhdin A.S. Issledovaniye techeniya v bezlopatochnykh diffuzorakh. Avtoref. Kand. Diss. [Investigation of flow in bladeless diffusers. Cand. Diss.]. Leningrad, 1969. 19 p.
[16] Seleznev K.P., Galerkin Yu.B., Nuzhdin A.S., Strizhak L.Ya., Suslina I.P. Povysheniye effektivnosti tsentrobezhnykh kompressornykh stupeney s bezlopatochnymi diffuzorami. Kompressornyye i vakuumnyye mashiny. Sb., TsINTI-KhIMNEFTEMash., 1968, no. 2.
[17] Galerkin Yu.B., Nuzhdin A.S., Seleznev K.P. Influence of the shape of the profile of a blade-less diffuser on the efficiency of the centrifugal compressor stage. Issledovaniya v oblasti kompressornykh mashin. Tr. II konf. po kompressorostroyeniyu [Research in the field of compressor machines. Proceedings of the II conference on compressor engineering]. Kiev, Budivel’nik publ., 1970, pp. 203–214.
[18] Galerkin Yu.B., Rekstin A.F., Solov’yeva O.A. Selecting the Dimensions of the Vaneless Diffuser of a Centrifugal Compressor Stage at the Primary Design Phase. Proceedings of Higher Educational Institutions. Machine Building, 2019, no. 10, pp. 43–57 (in Russ.), doi: 10.18698/0536-1044-2019-10-43-57
[19] Galerkin Yu.B., Solov’yeva O.A. Improvement of vaneless diffuser calculations based on CFD experiment. Kompressornaya tekhnika i pnevmatika, 2014, no. 3, pp. 35–41 (in Russ.).
[20] Galerkin Yu.B., Solov’yeva O.A. Improvement of vaneless diffuser calculations based on CFD experiment. Part II. Kompressornaya tekhnika i pnevmatika, 2014, no. 4, pp. 15–21 (in Russ.).
[21] Rekstin A.F., Drozdov A.A., Solovyeva O.A., Galerkin Yu.B. Two mathematical models centrifugal compressor stage vaneless diffuser comparison. Oil and Gas Engineering, AIP Conf. Proc., 2007, Omsk, Russia, 2018, pp. 030035-1–030035-12, doi: https://doi.org/10.1063/1.5051896
[22] Galerkin Yu.B. Design issues of the flow part of natural gas centrifugal compressors. Kompressornaya tekhnika i pnevmatika v XXI veke. Tr. Mezhdunar. nauch.-tekhn. konf. po kompressorostroyeniyu [Compressor equipment and Pneumatics in the XXI century. Proceedings of the international scientific and technical conference on compressor engineering]. Ukraina, Sumy, 2004, vol. 2, pp. 166–188.
[23] Sorokes J.M., Hutchinson B.R. The Practical Application of CFD in the Design of Industrial Centrifugal Compressors. Challenges and Goals in Pipeline Compressors, 2000, PID, vol. 5, pp. 47–54.
[24] Sorokes J.M., Nye D.A., D’Orsi N., Broberg R. Sidestream optimization through the use of computational fluid dynamics and model testing. Proceedings of the 29th Turbomachinery symposium, Texas, A&M, 2000, pp. 21–30, doi: 10.21423/R1QS8R
[25] Galerkin Yu.B., Rekstin A.F., Soldatova K.V., Drozdov A.A. Alternative method of centrifugal compressor loading factor modeling. Kompressornaya tekhnika i pnevmatika, 2016, no. 6, pp. 11–19 (in Russ.).
[26] Galerkin Yu.B., Soldatova K.V. Loading factor performance of a centrifugal compressor impeller. Specific features and way of modeling. Kompressornaya tekhnika i pnevmatika, 2016, no. 1, pp. 24–34 (in Russ.).
[27] Drozdov A., Rekstin A. Analysis of the velocity diagrams of impellers of centrifugal compressor stages after the preliminary design. International Scientific Conference on Energy, Environmental and Construction Engineering, MATEC Web Conf., 2018, vol. 245, doi: 10.1051/matecconf/201824504004
[28] Rekstin A.F., Galerkin Yu.B. The primary design method development of centrifugal compressor impellers based on the analysis of the geometrical parameters. Oil and Gas Engineering. AIP Conf. Proc., Omsk, Russia, 2019, vol. 2141, pp. 030052–030052-10, doi: https://doi.org/10.1063/1.5122102
[29] Rekstin A.F., Galerkin Yu.B., Soldatova K.V. Computer programs application for development a primary design recommendations of low-flow rate centrifugal compressor stages. Oil and Gas Engineering. AIP Conf. Proc., Omsk, Russia, 2019, vol. 2141, pp. 030032–030032-10, doi: https://doi.org/10.1063/1.5122082
[30] Soldatova K.V. Sozdaniye novoy matematicheskoy modeli protochnoy chasti tsentrobezhnykh kompressorov i bazy dannykh model’nykh stupeney. Dokt. Diss. [Creating a new mathematical model of the flow part of centrifugal compressors and a database of model stages. Doct. Diss.]. Sankt-Petersburg, SPbSTU publ., 2017. 357 p.