Dynamics of Working Processes in Automatic Direct-Acting Pressure Regulators of Pneumatic Spacecraft Systems
Authors: Lebedev A.V., Chernyshev A.V., Kyurdzhiev Y.V., Mitrofanov A.P., Ilicheva O.S., Yavna D.E. | Published: 20.08.2021 |
Published in issue: #9(738)/2021 | |
Category: Energy and Electrical Engineering | Chapter: Vacuum and Compressor Technology and Pneumatic Systems | |
Keywords: pressure regulator, pneumatic system, valve unit, Amesim, spacecraft |
The purpose of the study was by means of modern software to explore working processes taking place in automatic direct-acting pressure regulators of pneumatic spacecraft systems. As a result, we developed a general mathematical model of the pressure regulator. The design of the regulator is shown in the form of a block diagram, composed of a set of channels, cavities, and stages. The elements of the block diagram are interconnected by the basic laws of conservation of energy and mass. The mathematical model was evaluated in the Amesim software package. Findings of the full-scale and computational experiments led to the conclusions about the effect the heat exchange between the working fluid and the environment produces on the parameters of the pressure regulator, and about the use of the Amesim software package for further research of working processes in the valve units of pneumatic systems.
References
[1] Mikrin E.A. Scientific and engineering problems involved in the implementation of the project "Manned space systems and complexes". Kosmicheskaya tekhnika i tekhnologiya [Space technique and technologies], 2019, no. 3, pp. 5–19. (In Russ.).
[2] Berkovich Yu.A., Smolyanina S.O., Zheleznyakov A.G. Prospects for using space greenhouses as a part of a suite of crew life support systems of a lunar orbital station, a lunar base and interplanetary transfer vehicles. Kosmicheskaya tekhnika i tekhnologiya [Space technique and technologies], 2019, no. 2, pp. 37–54. (In Russ.).
[3] Guzenberg A.S., Zheleznyakov A.G., Romanov S.Yu., et al. Selecting life support system for the crews of long duration space stations. Kosmicheskaya tekhnika i tekhnologiya [Space technique and technologies], 2015, no. 1, pp. 67–80. (In Russ.).
[4] Maevskiy V.A., Aseev V.V., Ivlev A.S., et al. Some possible fields of utilization of high-temperature superconductivity in lunar exploration program. Kosmicheskaya tekhnika i tekhnologiya [Space technique and technologies], 2019, no. 2, pp. 14–26, doi: https://doi.org/10.33950/spacetech-2308-7625-2019-2-14-27 (in Russ.).
[5] Makushenko Yu.G., Murtazin R.F., Zarubin D.S. The cislunar spaceport for the crew delivery to the lunar surface. Kosmicheskaya tekhnika i tekhnologiya [Space technique and technologies], 2019, no. 2, pp. 5–13, doi: https://doi.org/10.33950/spacetech-2308-7625-2019-2-5-13 (in Russ.).
[6] [6] Romanov S.Yu., Guzenberg A.S., Ryabkin A.M. Crew life support system concept for interplanetary missions. Kosmicheskaya tekhnika i tekhnologiya [Space technique and technologies], 2017, no. 3, pp. 80–97. (In Russ.).
[7] Shevchenko V.V. Utilization of the asteroid subject on the moon - а more economic way to obtain cosmic resources of high value. Kosmicheskaya tekhnika i tekhnologiya [Space technique and technologies], 2018, no. 1, pp. 5–22. (In Russ.).
[8] Averin I.N., Egorov A.M., Tupitsyn N.N. Special features of architecture, developmental testing and operation of the propulsion system for the upper stage block DM-SL used in the sea launch complex and avenues to its further improvement. Kosmicheskaya tekhnika i tekhnologiya [Space technique and technologies], 2014, no. 2, pp. 62–73. (In Russ.).
[9] Bashmakov V.N., Koryakin A.I., Kropotin S.A., et al. Methodology of development and test of the electrical rocket propulsion system for telecommunication spacecraft Yamal-200 (to the 15th anniversary of operation in space). Kosmicheskaya tekhnika i tekhnologiya [Space technique and technologies], 2019, no. 2, pp. 91–106. (in Russ.).
[10] [10] Bordakov V.N. Working process theory and computation for pneumohydraulic systems. Vestnik MAI [Aerospace MAI Journal], 2009, vol. 16, no. 1. URL: http://vestnikmai.ru/publications.php?ID=10126 (in Russ.).
[11] Gimadiev A.G. Avtomatika i regulirovanie dvigatel’nykh ustanovok raketnykh i kosmicheskikh sistem [Automatics and regulation of propulsion plants in rocket and space systems]. Samara, SGAU Publ., 2010. 201 p.
[12] Romanenko N.T., ed. Agregaty pnevmaticheskikh sistem letatel’nykh apparatov [Pneumatic system aggregates of the aircraft]. Moscow, Mashinostroenie Publ., 1976. 176 p.
[13] Ushakov V.V. Agregaty pnevmogidravlicheskikh sistem zhidkostnykh raketnykh dvigatel’nykh ustanovok letatel’nykh apparatov [Pneumohydraulic system aggregates of liquid-propellant aircraft power plants]. Moscow, MAI Publ., 1990. 98 p.
[14] Eysmont V.P. Regulyatory [Regulators]. Sankt-Petersburg, Diton Publ., 2012. 336 p.
[15] Gavrilov S.V., Medvedev N.I., Eremichev K.A. Reduktor davleniya gaza [Gas pressure reducing gear]. Patent RU 2711772. Appl. 20.03.2019, publ. 22.01.2020.
[16] Bogdanova N.V., Vasil’yev V.A., Vasil’yevna T.V., et al. Regulyator davleniya [Pressure regulator]. Patent RU 2562275. Appl. 28.03.2014, publ. 10.09.2015
[17] Vasyutin Yu.I., Il’in V.T., Lebedev A.V., et al. Reduktor davleniya gaza [Gas pressure reducing gear]. Patent RF 2484434. Appl. 25.10.2011, publ. 10.06.2013.
[18] Gimadiev A.G., Kryuchkov A.N., Prokof’yev A.B., et al. Avtomatika i regulirovanie aviatsionnykh dvigateley i energeticheskikh ustanovok. Ch. 1 [Automatics and regulation of aviation engines and power plants. P. 1]. Samara, SGAU Publ., 2002. 82 p.
[19] Popov D.N. Dinamika i regulirovanie gidro- i pnevmosistem [Dynamics and regulation of hydro- and pneumosystems]. Moscow, Mashinostroenie Publ., 1977. 424 p.
[20] Shakhmatov E.V. Dinamicheskie protsessy v gidravlicheskikh i pnevmaticheskikh sistemakh letatel’nykh apparatov [Dynamic processes in hydraulic and pneumatic aircraft systems]. Samara, SGAU Publ., 2011. 138 p.
[21] Golubev M.D. Gazovye regulyatory davleniya [Gas pressure regulators]. Moscow, Mashinostroenie Publ., 1964. 152 p.
[22] Arzumanov Yu.L. Matematicheskie modeli sistem pnevmoavtomatiki [Mathematical models of pneumatic control systems]. Moscow, Bauman MSTU Publ., 2009. 294 p.
[23] Chernyshev A.V., Kyurdzhiev Yu.V., Atamasov N.V., et al. Justification of the working medium model selection for calculation of dynamic parameters of pneumohydraulic systems. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2018, no. 9, pp. 57–62, doi: http://dx.doi.org/10.18698/0536-1044-2018-9-57-63 (in Russ.).
[24] Reid R.C., Prausnitz J.M., Sherwood T.K. The properties of gases and liquids. McGraw-Hill, 1977. (Russ. ed.: Svoystva gazov i zhidkostey. Leningrad, Khimiya Publ., 1982. 592 p.)
[25] Idel’chik I.E., Shteynberg M.O., eds. Spravochnik po gidravlicheskim soprotivleniyam [Handbook on hydraulic resistances]. Moscow, Mashinostroenie Publ., 1992. 672 p.
[26] Gimadiev A.G., Greshnyakov P.I., Sinyakov A.F. LMS Imagine.Lab AMESim kak effektivnoe sredstvo modelirovaniya dinamicheskikh protsessov v mekhatronnykh sistemakh [LMS Imagine.Lab AMESim as an effective modelling software for dynamic processes in mechatronics systems]. Samara, Izd-vo SamNTs RAN Publ., 2014. 138 p.