Optimization of Return Channels of High Flow Centrifugal Compressor Stages by CFD-Methods
Authors: Marenina L.N., Galerkin Y.B. | Published: 27.09.2021 |
Published in issue: #10(739)/2021 | |
Category: Energy and Electrical Engineering | Chapter: Vacuum and Compressor Technology and Pneumatic Systems | |
Keywords: CFD-optimization, return channel, U-bend, loss coefficient, centrifugal compressor |
Calculations performed with modern computer fluid dynamics (CFD) programs aid in optimizing the flow path of a centrifugal compressor. The characteristics of the stator elements of the flow path, calculated by CFD methods, are considered to be quite accurate. Optimization of three-stage reverse-directing devices with a large flow rate (0.15) and different theoretical head coefficients (0.45; 0.60; 0.70) has been carried out. For optimizing return channels a parameterized model was created. Optimization was performed with MOGA (Multi-Objective Genetic Algorithm) optimization method in the Direct Optimization program of the ANSYS software package. The optimization goal was to achieve the minimum loss factor at the design point. In the optimization process, the following parameters were varied: the number of and the inlet angle of the vanes, the height of the vanes at the inlet, external and internal radii of curvature of the U-bend. For the return channel with a minimum loss coefficient, the dependences of this parameter on the flow coefficient were calculated. Comparison with the characteristics of the initial variant showed that the optimized return channels are more efficient over the entire flow range. Optimization allowed reducing the loss factor by 20%.
References
[1] Galerkin Yu.B., ed. Trudy nauchnoy shkoly kompressorostroeniya SPbGPU [Proceedings of SPbGPU scientific compressor building school]. Moscow, SPbGPU Publ., 2010. 669 p.
[2] Vasil’yev Yu.S., Rodionov P.I., Sokolovskiy M.I. High-efficient centrifugal compressors of new generation. Scientific foundations of calculation, development of optimum design methods and commercial production. Promyshlennost’ Rossii, 2000, no. 10–11, pp. 78–85 (in Russ.).
[3] Galerkin Y.B., Danilov K.A., Popova E.Y. Universal modelling for centrifugal compressors-gas dynamic design and optimization concepts and application. Yokohama Int. Gas Turbine Cong., 1995, Yokohama
[4] Galerkin Y., Danilov K., Popova E. Design philosophy for industrial centrifugal compressor. Int. Conf. Compressors and their Systems. London, City University, 1999, pp. 465–480.
[5] Galerkin Yu.B., Rekstin A.F., Solovyeva O.A. Vaneless diffuser of the centrifugal compressor stage design method. AIP Conf. Proc., 2019, vol. 2141, no. 1, art. 030007, doi: https://doi.org/10.1063/1.5122057
[6] Rekstin A.F., Galerkin Yu.B. The primary design method development of centrifugal compressor impellers based on the analysis of the geometrical parameters. AIP Conf. Proc., 2019, vol. 2141, no. 1, art. 030052, doi: https://doi.org/10.1063/1.5122102
[7] Solovyeva O., Drozdov A. Mathematical model of centrifugal compressor vaneless diffuser based on CFD calculations. E3S Web Conf., 2020, vol. 178, art. 01014, doi: https://doi.org/10.1051/e3sconf/202017801014
[8] Rekstin A.F., Galerkin Yu.B. Low-flow rate centrifugal compressor stages primary design specificity. Vestnik permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta [Bulletin PNRPU. Mechanical engineering, materials science], 2018, vol. 20, no. 2, pp. 43–54, doi: https://doi.org/10.15593/2224-9877/2018.2.06 (in Russ.).
[9] Galerkin Yu.B., Rekstin A.F., Marenina L.N., et al. [Making parametrized model of ONA flow channel for tests in virtual wind channel]. Tekhnika i tekhnologiya neftekhimicheskogo i neftegazovogo proizvodstva. Mat. 10-y Mezhd. nauch.-tekh. konf. [Technics and technology of petrochemical and petroleum production. Proc. 10th Sci.-Tech. Conf.]. Omsk, OmGTU Publ., 2020, pp. 127–128 (in Russ.).
[10] Marenina L., Galerkin Yu., Drozdov A. Stator elements optimization of centrifugal compressor intermediate type stage by CFD methods. E3S Web Conf., 2020, vol. 178, art. 01020, doi: https://doi.org/10.1051/e3sconf/202017801020
[11] Ris V.F. Tsentrobezhnye kompressornye mashiny [Centrifugal compressor machines]. Leningrad, Mashgiz Publ., 1951. 245 p.
[12] Den G.N. Proektirovanie protochnoy chasti tsentrobezhnykh kompressorov [Design of flow channel for centrifugal compressors]. Leningrad, Mashinostroenie Publ., 1980. 230 p.
[13] Livshits S.P. Aerodinamika tsentrobezhnykh kompressornykh mashin [Aerodynamics of centrifugal compressor machines]. Moscow, Leningrad, Mashinostroenie Publ., 1966. 340 p.
[14] Seleznev K.P., Galerkin Yu.B. Tsentrobezhnye kompressory [Centrifugal compressors]. Leningrad, Mashinostroenie Publ., 1982. 271 p.
[15] Galerkin Yu.B. Turbokompressory. Rabochiy protsess, raschet i proektirovanie protochnoy chasti [Turbo compressors. Working process, calculation and flow channel design]. Moscow, KKhT Publ., 2010. 581 p.
[16] Aungier R.H. Centrifugal compressors: a strategy for aerodynamic design and analysis. New York, ASME, 2000. 320 p.
[17] Cumpsty N.A. Compressor aerodynamics. Longman, 1989. 509 p.
[18] Galerkin Yu.B., Soldatova K.V. Modelirovanie rabochego protsessa promyshlennykh tsentrobezhnykh kompressorov. Nauchnye osnovy, etapy razvitiya, sovremennoe sostoyanie [Working process simulation for industrial centrifugal compressors. Scientific basis, development stages, current state]. Sankt-Petersburg, izd-vo Politekhn. un-ta Publ., 2011. 328 p.
[19] Galerkin Yu.B., Rekstin A.F., Soldatova K.V., et al. [Development of LPI-SPbPU Petra Velikogo – a compressor building scientific school, results of collaboration with compressor builders]. 17 Mezhd. nauch.-tekh. konf. [17 Int. Sci.-Tech. Conf.]. Kazan’, 2017, pp. 19–29 (in Russ.).
[20] Shnepp V.B. Konstruktsiya i raschet tsentrobezhnykh kompressornykh mashin [Construction and calculation of centrifugal compressor machines]. Moscow, Mashinostroenie Publ., 1995. 240 p.
[21] Rube C., Rossbach T., Wedeking M., et al. Experimental and numerical investigation of the flow inside the return channel of a centrifugal process compressor. J. Turbomach., 2016, vol. 138, no. 10, art. 101006, doi: https://doi.org/10.1115/1.4032905
[22] Bisping J., Rossbach T., Grates D., et al. Influence of diffuser diameter ratio on the performance of a return channel within a centrifugal compressor stage. Proc. GPPS Forum 18 Global Power and Propulsion Society. Montreal, 2018. https://gpps.global/wp-content/uploads/2021/02/GPPS-NA-2018-0034.pdf
[23] Yagi M., Nishioka T., Kobayashi H., et al. Effects of return channel with splitter vanes on performance of multistage centrifugal compressor. ASME Turbo Expo, 2015, paper no. GT2015-42442, doi: https://doi.org/10.1115/GT2015-42442
[24] Nishida H., Kobayashi H., Nishida H., et al. Performance improvement of a return channel in a multistage centrifugal compressor using multiobjective optimization. J. Turbomach., 2013, vol. 135, no. 3, art. 031026, doi: https://doi.org/10.1115/1.4007518
[25] Kortikov N., Borovkov A., Voynov I., et al. Modeling the gas-dynamic characteristics of the low-flow and mid-flow model stages for an industrial centrifugal compressor. MATEC Web Conf., 2018, vol. 245, art. 04019, doi: https://doi.org/10.1051/matecconf/201824504019
[26] Borovkov A.I., Voinov I.B., Nikitin M.A., et al. Experience of performance modeling the single-stage pipeline centrifugal compressor. AIP Conf. Proc., 2019, vol. 2141, no. 1, art. 030051, doi: https://doi.org/10.1063/1.5122101
[27] Borovkov A.I., Voinov I.B., Galerkin Yu.B., et al. Experimental characteristic simulation for two-stage pipeline centrifugal compressor. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 604, art. 012052, doi: https://doi.org/10.1088/1757-899X/604/1/012052
[28] Borovkov A., Voinov I., Galerkin Y., et al. Issues of gas dynamic characteristics modeling: a study on a centrifugal compressor model stage. E3S Web Conf., 2019, vol. 140, art. 06003, doi: https://doi.org/10.1051/e3sconf/201914006003
[29] Ji Ch., Li Ch., Fang J., et al. Loss mechanism of static interstage components of multistage centrifugal compressors for integrated blade design. Math. Probl. Eng., 2018, vol. 2018, art. 9025650, doi: https://doi.org/10.1155/2018/9025650
[30] Veress A., Van den Braembussche R. Inverse design and optimization of a return channel for a multistage centrifugal compressor. J. Fluids Eng., 2004, vol. 126, no. 5, pp. 799–806, doi: https://doi.org/10.1115/1.1792258
[31] Drozdov A., Rekstin A. Analysis of the velocity diagrams of impellers of centrifugal compressor stages after the preliminary design. MATEC Web Conf., 2018, vol. 245, art. 04004, doi: https://doi.org/10.1051/matecconf/201824504004
[32] Popova E.Yu. Optimizatsiya osnovnykh parametrov stupeney turbomashin na osnove matematicheskogo modelirovaniya. Diss kand. tekh. nauk [Main parameters optimization of turbomachine stages based on mathematic modelling. Kand. tech. sci. diss.]. Sankt-Petersburg, SPbGPU Publ., 1991. 275 p.
[33] Rekstin A.F., Soldatova K.V., Galerkin Yu.B. Experience of application the computer program based on a simplified mathematical model for industrial centrifugal compressors candidates. IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 604, art. 012045, doi: https://doi.org/10.1088/1757-899X/604/1/012045
[34] Rekstin A.F., Soldatova K.V., Galerkin Yu.B., et al. Verification of a simplified mathematical model of centrifugal compressor stages. E3S Web Conf., 2019, vol. 124, art. 01005, doi: https://doi.org/10.1051/e3sconf/201912401007
[35] Rekstin A.F., Bakaev B.V. Variant calculations for industrial centrifugal compressors based on simplified mathematical model. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki [St. Petersburg State Polytechnic University Journal of Engineering Science and Technology], 2018, vol. 24, no. 4, pp. 24–38, doi: https://doi.org/10.18721/JEST.24403 (in Russ.).
[36] Sorokes J.M. The practical application of CFD in the design of industrial centrifugal impellers. Texas A&M University, 1993, doi: https://doi.org/10.21423/R1P074
[37] Galerkin Y., Rekstin A., Drozdov A., et al. The optimal gas dynamic design system of industrial centrifugal compressors based on universal modeling method. E3S Web Conf., 2020, vol. 178, art. 01028, doi: https://doi.org/10.1051/e3sconf/202017801028
[38] Galerkin Yu.B., Marenina L.N. Investigation and perfection of centrifugal compressor stages by CFD methods. Part 1. Kompressornaya tekhnika i pnevmatika [Compressors & Pneumatics], 2014, no. 1, pp. 30–36. (in Russ.).
[39] Marenina L., Galerkin Y., Soldatova K. Computational fluid dynamics application for analysis of centrifugal compressor stage stator part. Int. J. Mech. Eng. Robot. Res., 2018, vol. 7, no. 6, pp. 656–661, doi: https://doi.org/10.18178/ijmerr.7.6.656-661
[40] Solov’yeva O.A. Matematicheskaya model’ dlya rascheta gazodinamicheskikh kharakteristik i optimizatsii bezlopatochnykh diffuzorov tsentrobezhnykh kompressornykh stupeney. Diss. kand. tekh. nauk [Mathematical model for calculation of gas dynamic characteristics and optimization of vaneless diffusers for centrifugal compressor stages. Kand. tech. sci. diss.]. Sankt-Petersburg, SPbPU Publ., 2018. 162 p.
[41] Rekstin A.F., Drozdov A.A., Solov’yeva O.A., et al. Comparison of two mathematical models of vaneless diffuser of centrifugal compressor stage. Kompressornaya tekhnika i pnevmatika [Compressors & Pneumatics], 2019, no. 1, pp. 2–10 (in Russ.).