Statistical Mathematical Model for Calculating the Efficiency of Turbo-Expander Compressors: Improvement and Identification
Authors: Galerkin Y.B., Rekstin A.F., Solovyeva O.A., Drozdov A.A., Semenovskiy V.B. | Published: 07.07.2022 |
Published in issue: #7(748)/2022 | |
Category: Energy and Electrical Engineering | Chapter: Vacuum and Compressor Technology and Pneumatic Systems | |
Keywords: centrifugal compressor, turbo-expanding unit, mathematical model, efficiency, inlet nozzle |
Despite their small size turbo expander units used for transportation and processing oil and gas have a capacity of up to 5.5 MW. Designing new turbo-expander units includes several stages, one of which is the variant calculation of the compressor for the given parameters. For calculating the efficiency of the compressor by its main parameters a specialized statistical model is used. The efficiency of stages designed according to a single unambiguous methodology depends on the design parameters and similarity criteria. The generalization of experience in designing turbo-expander units allowed improving the statistical mathematical model used in the Universal Modeling Method, taking into account the specifics of compressors. The new version of the mathematical model correctly takes account of losses in the inlet nozzle, the method of manufacturing the impeller, the diffuser type, etc. The resulting mathematical model includes 22 empirical coefficients. To select the correct values of the coefficients, the results of 26 acceptance tests of turbo-expander compressors were used. The error of the new statistical model with the selected of empirical coefficient values was 1.8%, which is sufficient for its practical application in project activities.
References
[1] Galiullin Z.T., Sal’nikov S.Yu., Shchurovskiy V.A. Sovremennye gazotransportnye sistemy i tekhnologii [State-of-the-artgas transmission systems and technologies]. Moscow, Gazprom VNIIGAZ Publ., 2014. 345 p. (In Russ.).
[2] Prokopov A.V., Kubanov A.N., Istomin V.A. et al. State-of-art technologies for gas treatment at gas-condensate fields. Vesti gazovoy nauki, 2015, no. 3, pp. 100–108. (In Russ.).
[3] Semenovskiy V.B. Osobennosti gazodinamicheskogo proektirovaniya tsentrobezhnykh kompressorov turbodetandernykh agregatov i sozdanie bazy dannykh model’nykh stupeney po rezul’tatam zavodskikh ispytaniy. Diss. kand. tekh. nauk [Special aspects of gas-dynamic modelling of centrifugal pumps for turbo-expanding assemblies and forming of model stages base on the results of production tests. Kand. tech. sci. diss.]. Sankt-Peterыburg, SpbPU Publ., 2020. 173 p. (In Russ.).
[4] Agregat turbodetandernyy proizvoditel’nost’yu 7–11 mln m?/sut. Rezhim dostupa: http://www.turbokholod.ru/content/c7-page1.html (data obrashcheniya: 16.10.2018).
[5] Galerkin Yu.B., Danilov K.A., Popova E.Yu. Razvitie metoda universal’nogo modelirovaniya rabochego protsessa TsK — programmnye kompleksy pervogo urovnya (tret’ye pokolenie), opyt razrabotki i prakticheskogo ispol’zovaniya kompleksa tret’yego urovnya [Developing method for universal modelling of centrifugal pump working process – first-level software complexes (third generation), experience of development and practical use of a third-level complex]. Abstracts of reports X IRTC on compressor technology Kazan, Izd. "Slovo", 1995. pp. 25–31 (In Russ.).
[6] Galerkin Yu.B. Forming view on working processes and current status of mathematical design methods of industrial centrifugal pumps. Kompressornaya tekhnika i pnevmatika, 2000, no. 2, pp. 9–14. (In Russ.).
[7] Galerkin Yu.B., Danilov K.A., Popova E.Yu. Numerical modelling of centrifugal compressor stages (physical foundations, current status). Kompressornaya tekhnika i pnevmatika, 1993, no. 2, pp. 1 - 9 (In Russ.).
[8] Danilov K.A. Sozdanie matematicheskoy modeli i programmnykh kompleksov dlya optimal’nogo gazodinamicheskogo proektirovaniya kholodil’nykh tsentrobezhnykh kompressorov. Diss. kand. tekh. nauk [Design of mathematical model and software complexes for optimum gas-dynamic design of refrigeration centrifugal compressors. Kand. tech. sci. diss.]. Sankt-Petersburg, SPbGTU Publ., 1999. 176 p. (In Russ.).
[9] Galerkin Yu.B., Danilov K.A., Mitrofanov V.P. et al. K ispol’zovaniyu chislennykh metodov pri proektirovanii protochnoy chasti tsentrobezhnykh kompressorov [On using numerical methods in design of flow part for centrifugal compressors]. Sankt-Peterburg, SPbGTU Publ., 1996. 68 p. (In Russ.).
[10] Galerkin Yu.B. Turbokompressory. Rabochiy protsess, raschet i proektirovanie protochnoy chasti [Turbocompressors. Working processes, calculation and design of a flow part]. Moscow, KKhT Publ., 2010. 596 p. (In Russ.).
[11] Popova E.Yu. Optimizatsiya osnovnykh parametrov stupeney turbomashin na osnove matematicheskogo modelirovaniya. Diss. kand. tekh. nauk [Mail parameters optimization of turbomachine stages based on mathematical modelling. Kand. tech. sci. diss.]. Sankt-Petersburg, SPbGPU P|ubl., 1991. 275 p. (In Russ.).
[12] Rekstin A.F. Nauchnye osnovy i realizatsiya metoda pervichnogo proektirovaniya protochnoy chasti tsentrobezhnykh kompressorov [Scientific basis and realization of primary modeling method for a flow part of centrifugal compressor]. Sankt-Petersburg, SPbPU Publ., 2021. 342 p. (In Russ.).
[13] Galerkin Y., Rekstin A., Drozdov A. 2D and 3D impellers of centrifugal compressors — advantages, shortcomings and field of application. IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 232, art. 012040, doi: https://doi.org/10.1088/1757-899X/232/1/012040
[14] Babichenko I.A., Mikhaylov A.A., Sokolov K.K. et al. Experience in gas dynamic design of turboexpander centrifugal compressors. Inlet tract CFD analysis. Materialovedenie. Energetika [Materials Science. Power Engineering], 2021, vol. 27, no. 2, pp. 5–22, doi: https://doi.org/10.18721/JEST.2720 (in Russ.).