On application of thermodynamics of irreversible processes for calculation of operating modes of supersonic ejector
Authors: Tsegelskiy V.G. | Published: 16.06.2015 |
Published in issue: #6(663)/2015 | |
Category: Transportation and Power Engineering | |
Keywords: supersonic ejector, critical mode, thermodynamics of irreversible processes, Prigogine theorem |
The experimental and theoretical research performed recently on supersonic gas ejectors with conical mixing chamber has shown the possibility of realization of two critical operating modes. They differ both in the flow structure in the mixing chamber and the ejector efficiency when operating in these modes. For general industrial implementation of the ejector with a more efficient operating mode, it is necessary to develop methods of its calculation that will consider a variety of modes. A method of calculation of a supersoniс gas ejector with ideal conical mixing chamber is proposed. The method is based on the thermodynamics of irreversible processes and considers all possible ejector operating modes. Satisfactory agreement between the calculation results and experimental data is obtained. The axiom of tendency of processes in nature to perfection is formulated, which does not contradict Prigogine theorem. It explains, on the basis of thermodynamics of irreversible processes, the possibility of realization of two critical operating modes of the ejector at the same ejection coefficient. Applicability of this axiom for determination of gas-liquid ejector operating modes is shown.
References
[1] Sun D.W., Eames I.W. Recent developments in the design theories and applications of ejectors–a review. Journal of the Institute of Energy, 1995, vol. 68, iss. 475, pp. 65–79.
[2] Sbornik rabot po issledovaniiu sverkhzvukovykh gazovykh ezhektorov [A collection of papers on the study of supersonic gas ejectors]. Moscow, TsAGI publ., 1961. 327 p.
[3] Baikov V.S., Vasil’ev Iu.N. Teoriia sverkhzvukovogo gazovogo ezhektora s izobaricheskoi kameroi smesheniia [The theory of supersonic gas ejector with isobaric mixing chamber]. Trudy TsIAM [Proceedings of the CIAM]. 1982, no. 976, 55 p.
[4] Deich M.E. Tekhnicheskaia gazodinamika [Technical gas dynamics] Moscow, Energiia publ., 1974. 592 p.
[5] Zhu Y., Cai W., Wen C., Li Y. Numerical investigation of geometry parameters for design ofhigh performance ejectors. Applied Thermal Engineering, 2009, vol. 29, iss. 5-6, pp. 898–905.
[6] Vasil’ev Iu.N., Lashkov Iu.A. Eksperimental’noe issledovanie gazovykh ezhektorov s konicheskimi kamerami smesheniia [Experimental study of gas ejectors with conical mixing chambers]. Sbornik rabot po issledovaniiu sverkhzvukovykh gazovykh ezhektorov [A collection of papers on the study of supersonic gas ejectors]. Moscow, TsAGI publ., 1961, pp. 224–235.
[7] Sokolov E.Ia., Zinger N.M. Struinye apparaty [Jet devices]. Moscow, Energoatomizdat publ., 1989. 351 p.
[8] Khikmen K.E., Khill R.G., Dzhilbert G.B. Teoreticheskoe i eksperimental’noe issledovanie struinogo ezhektora dlia szhimaemoi zhidkosti so smesitel’noi truboi peremennogo secheniia [Theoretical and experimental study of the jet ejector for an incompressible fluid with variable cross-section of the mixing tube]. Trudy Amerikanskogo obshchestva inzhenerovmekhanikov. Seriia D. Teoreticheskie osnovy inzhenernykh raschetov [Proceedings of the American Society of Mechanical Engineers. Series D. Theoretical Foundations of engineering calculations]. 1973, no. 2, pp. 164–175.
[9] Khedzhes K.R., Khill P.G. Gazostruinye ezhektory. Chast’ II. Eksperimental’noe issledovanie kartiny techeniia i analiz [Gas-jet ejectors. Part II. Experimental study of flow patterns and analysis]. Trudy Amerikanskogo obshchestva inzhenerov-mekhanikov. Seriia D. Teoreticheskie osnovy inzhenernykh raschetov [Proceedings of the American Society of Mechanical Engineers. Series D. Theoretical Foundations of engineering calculations]. 1976, no. 3, pp. 202–209.
[10] Matsuo, K., Sasaguchi, K., Tasaki, K. Mochizuki, H. Investigation of supersonic air ejectros – 2. Effects of throat-area-ratio on ejector performance. Bulletin of the JSME, 1982, vol. 25, iss. 210, pp. 1898–1905.
[11] Kim S., Kwon S. Experimental determination of geometric parameters for an annular injection type supersonic ejector. Journal of Fluids Engineering, 2006, vol. 128, iss. 6, 2006, pp. 1164–1171.
[12] Tsegel’skii V.G. K teorii gazovykh ezhektorov s tsilindricheskoi i konicheskoi kamerami smesheniia [On the theory of gas ejectors having cylindrical and conical mixing chambers]. Izvestiia vysshikh uchebnykh zavedenii. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building]. 2012, no. 2, pp. 46–71.
[13] Tsegel’skii V.G., Akimov M.V., Safargaliev T.D. Eksperimental’no-teoreticheskoe issledovanie rezhimov raboty sverkhzvukovykh gazovykh ezhektorov s tsilindricheskoi i konicheskoi kamerami smesheniia [Experimental and theoretical investigation of operating modes of supersonic gas ejectors with cylindrical and conical mixing chambers]. Izvestiia vysshikh uchebnykh zavedenii. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building]. 2012, no. 3, pp. 48–58.
[14] Tsegel’skii V.G., Akimov M.V., Safargaliev T.D. Eksperimental’noe issledovanie vliianiia dliny konicheskoi kamery smesheniia i gorloviny diffuzora na kharakteristiki sverkhzvukovogo gazovogo ezhektora [Experimental Research of the Influence of Conical Chamber Length and Diffuser Throat on the Supersonic Ejector Characteristics]. Izvestiia vysshikh uchebnykh zavedenii. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building]. 2013, no. 4, pp. 30–44.
[15] Tsegel’skii V.G. K raschetu pervogo kriticheskogo rezhima sverkhzvukovogo gazovogo ezhektora s konicheskoi kameroi smesheniia [On Calculation of the First CRITICAL Mode of Supersonic Gas Ejector with Conical Mixing Chamber]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Mechanical Engineering]. 2014, no. 4, pp. 61–72.
[16] Tsegel’skii V.G. Dvukhfaznye struinye apparaty [Two-phase jet devices]. Moscow, Bauman Press, 2003. 408 p.
[17] Prigozhin I. Vvedenie v termodinamiku neobratimykh protsessov [Introduction to the thermodynamics of irreversible processes]. Izhevsk, NITs Reguliarnaia i khaoticheskaia dinamika publ., 2001. 160 p.
[18] Prigozhin I., Stengers I. Poriadok iz khaosa [Order out of chaos]. Moscow, URSS publ., 2000. 310 p.