Mechanical Variators in the Drives of Transportation Vehicle
Authors: Balakin P.D., Zgonnik I.P. | Published: 20.01.2016 |
Published in issue: #1(670)/2016 | |
Category: Transportation and Power Engineering | |
Keywords: mathematical model, variator, control circuit, harmonization of transformed power components, variable external loading |
The full use of available power and the preservation of the steady operating mode of the transportation vehicle power unit (internal combustion engine) under variable external loading is a very current problem. Researchers at Omsk State Technical University have developed original schemes of mechanical drives connecting the engine with the vehicle actuator. The drives are based on the schemes of mechanical variators with auto-changeable transmission function and non-holonomic connections between the main components. The proposed solutions contain a control circuit of the speed transmission function that follows the laws of mechanics and creates movement additional to the basic movement of the components. This movement is used to automatically control the kinematic characteristic of the variator. The authors have developed a general mathematical model of the movement of the mechanical variator whose transfer function depends of the transferred power level. The results of the calculations performed using the Excel software package are given. The variator harmonizes the components of the transformed power and ensures the steady operation of the vehicle engine under variable external loading.
References
[1] Balakin P.D., Zgonnik I.P. Geometro-kinematicheskie i silovye sootnosheniia v mekhanicheskom ploskoremennom avtovariatore [The geometrical-kinematic and power correlation in a mechanical flat-belt drive autovariator]. Omskii nauchnyi vestnik [Omsk Scientific Bulletin]. 2009, no. 2(80), pp. 79–82.
[2] Balakin P.D., Zgonnik I.P. Algoritm rascheta zhestkosti uprugogo elementa, vkhodiashchego v sostav tsepi upravleniia mekhanicheskogo avtovariatora [Algorithm for calculating the rigidity of the elastic element, which is part of the control circuit mechanical avtovariatora]. Omskii nauchnyi vestnik [Omsk Scientific Bulletin]. 2010, no. 2(90), pp. 15–19.
[3] Balakin P.D., Zgonnik I.P. Issledovanie dinamiki adaptivnogo avtovariatora [Analysis of dynamics of adaptive autovariator]. Omskii nauchnyi vestnik [Omsk Scientific Bulletin]. 2011, no. 2(100), pp. 69–73.
[4] Balakin P.D., Bienko V.V. Shkiv [Pulley]. Patent RF no. 2127841, 1999.
[5] Balakin P.D., Diundik E.A., Diundik O.S. Avtomaticheskii torovyi variator [Automatic CVT torus]. Patent RF no. 113323, 2014.
[6] Balakin P.D., Diundik E.A., Diundik O.S. Avtomaticheskii torovyi variator [Automatic CVT torus]. Patent RF no. 139930, 2012.
[7] Balakin P.D., Zgonnik I.P. Shkiv [Pulley]. Patent RF no. 73426, 2008.
[8] Balakin P.D., Zgonnik I.P. Shkiv [Pulley]. Patent RF no. 73425, 2008.
[9] Balakin P.D., Bienko V.V., Zhukov A.V. Shkiv [Pulley]. Patent RF no. 2224936, 2004.
[10] Balakin P.D., Mikhailik O.S., Filippov Iu.O. Avtomaticheskii friktsionnyi variator [Automatic friction variator]. Certificate for a utility model no. 27335, 2003.
[11] Balakin P.D. Avtomaticheskii friktsionnyi variator [Automatic friction variator]. Patent RF no. 2242652, 2004.