A Calculation Study of an Automobile Power Unit with Energy Recovery System
Authors: Gusakov S.V., Markov V.A., Behjuian H. | Published: 11.02.2016 |
Published in issue: #2(671)/2016 | |
Category: Transportation and Power Engineering | |
Keywords: power unit, vehicle, internal combustion engine, transmission, energy recovery system, driving cycle, fuel economy |
The need to increase fuel efficiency of vehicle power units has gained significant prominence. An efficient way to reduce operational fuel consumption of an automobile power unit is to utilize energy recovery systems. The authors examine a method of improving the power unit fuel efficiency indicators, which is based on the use of a mechanical energy accumulator represented as a flywheel (KERS — Kinetic Energy Recovery System). Calculation studies are carried out on the energy balance of the automobile power unit with the energy recovery system when the vehicle is tested in accordance with the EUDC, FTP-75 and WLTC driving cycles. The calculations have shown that the installation of the Fly Wheel KERS energy recovery system on board of the vehicle allows a significant reduction in the capacity of the vehicle’s internal combustion engine. It has been established that for the two studied diesel engines (Volkswagen TDI 1,9L and Mercedes Benz 300SD OM 617) the engine capacity can be reduced respectively to 52% and 46% of the standard size. In the WLTC driving cycle it allows the reduction of fuel consumption by 41% and 30% respectively.
References
[1] Kravets V.N., Gorynin E.V. Zakonodatel’nye i potrebitel’skie trebovaniia k avtomobiliam [Legislative and consumer demand for automobiles]. Nizhny Novgorod, NSTU publ., 2002. 400 p.
[2] Aleksandrov A.A., Arkharov I.A., Bagrov V.V., Gaivoronskii A.I., Grekhov L.V., Devianin S.N., Ivashchenko N.A., Markov V.A. Al’ternativnye topliva dlia dvigatelei vnutrennego sgoraniia [Alternative fuels for internal combustion engines]. Moscow, OOO NITs Inzhener publ., OOO Oniko-M publ., 2012. 791 p.
[3] Mashinostroenie. Entsiklopediia. Tom 4. Dvigateli vnutrennego sgoraniia [Mechanical Engineering. Encyclopedia. Vol. 4. Internal combustion engines]. Ed. Aleksandrov A.A., Ivashchenko N.A. Moscow, Mashinostroenie publ., 2013. 784 p.
[4] Gusakov S.V. Gibridnye silovye ustanovki na osnove DVS [Hybrid power plants based on internal combustion engines]. Moscow, RUDN publ., 2008. 180 p.
[5] Gusakov S.V., Markov V.A., Afanas’eva I.V. Uluchshenie ekspluatatsionnykh pokazatelei transportnykh sredstv pri ispol’zovanii gibridnykh silovykh ustanovok [Improvement of vehicles performances by use of hybrid propulsion systems]. Izvestiia vysshikh uchebnykh zavedenii. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building]. 2012, no. 2, pp. 32–41.
[6] Gusakov S.V., Akhmadnia M. Issledovanie rezervov povysheniia effektivnosti raboty DVS v sostave gibridnoi silovoi ustanovki [Research of reserves of increase of efficiency of internal combustion engines in hybrid propulsion system]. Izvestiia Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. Protsessy preobrazovaniia energii i energeticheskie ustanovki [News of Volgograd State Technical University. The processes of energy conversion and power plants]. 2014, iss. 6, no. 18, pp. 41–44.
[7] Mileshkin K. Izmenenie raskhoda topliva: pod voi barabanov [Change in fuel consumption: the beat of drums]. Za rulem [Behind the wheel]. 2012, no. 5, pp. 196–198.
[8] Karelina M.Iu., Gaidar S.M. Issledovanie effektivnosti tribotekhnicheskikh preparatov na osnove nanomaterialov [Research of efficiency of tribotechnical preparations on the basis of nanomaterials]. Gruzovik [Truck]. 2015, no. 4, pp. 17–29.
[9] Gusakov S.N., Markov V.A., Miakhriachev D.V. Ispytatel’nyi tsikl NEDC i ego sootvetstvie sovremennym usloviiam ekspluatatsii avtomobilei s benzinovym DVS [Estimation of Conformity of a Test Cycle NEDC to Modern Conditions of Operation of Automobiles with Petrol Ice]. Avtomobil’naia promyshlennost’ [Automotive Industry]. 2012, no. 9, pp. 37–39.
[10] Gusakov S.V., Markov V.A., Afanas’eva I.V., Akhmadnia M. Elektromekhanicheskaia transmissiia kak sposob uluchsheniia toplivnoi ekonomichnosti silovoi ustanovki avtomobilia [Electromechanical transmission as a way to improve the fuel efficiency of the power plant of the vehicle]. Avtomobil’naia promyshlennost’ [Automotive industry]. 2015, no. 6, pp. 5–8.
[11] Timkov A.N., Ivanov A.S. Raspredelenie tiagovogo i tormoznogo usiliia na kolesakh avtomobilia v raznykh ezdovykh tsiklakh [Distribution of traction and braking force on the wheels of a vehicle in different driving cycles]. Avtomobil’nyi transport [Automobile transport]. 2011, iss. 29, pp. 220–223.
[12] Vorona A.V. K vyboru ezdovogo tsikla gibridnogo avtomobilia [By choosing a hybrid vehicle driving cycle]. Avtomobil’nyi transport [Automobile transport]. 2011, iss. 29, pp. 227–230.
[13] Mathews T., Nishanth D. Flywheel based kinetic energy recovery systems (KERS) integrated in vehicles. Journal Policy International Journal of Engineering, Science and Technology, 2013, vol. 5, no. 9, pp. 1694–1699.
[14] Piancastelli L., Daidzic N.E., Frizziero L., Rocchi I. Analysis of automotive diesel conversions with KERS for future aerospace applications. International Journal of Heat and Technology, 2013, vol. 31, iss. 1, pp. 143–153.
[15] Debelov V.V., Kozlovskii V.N., P’ianov M.A., Stroganov V.I. Modelirovanie i razrabotka elektrotekhnicheskogo kompleksa upravleniia avtomobilem v rezhimakh start i stop [Modeling and development of complex electrical control of the vehicle in the start and stop]. Gruzovik [Truck: transportation complex and special technique]. 2015, no. 5, pp. 15–20.