Design Features of the Power Turbine Stage of the Transport Gas Turbine Engine with Variable-Area Nozzles
Authors: Troitskiy N.I., Molyakov V.D., Aseikina M.V. | Published: 04.03.2016 |
Published in issue: #3(672)/2016 | |
Category: Transportation and Power Engineering | |
Keywords: design law, gas turbine, turbine stage, variable nozzle assembly, profiling law, reaction degree, losses |
In this article the authors study the influence of the profiling law on the flow parameters in root and peripheral cross sections of blade rows with variable-area nozzles in a transport gas turbine engine. The calculations of the flow parameters are performed following a procedure that takes into account the curvature of the flow meridional lines and the losses in the turbine stage. It is shown that in the stages designed with the application of the Rztg??1 = const law, when the reaction degree in mid-diameter is constant, the reaction degree in root cross sections increases with the increase of the exponent z. It leads to higher efficiency of the turbine when it is operated in part-load modes. The requirements to parameters of the variable-area nozzle airfoil cascade with regard to the turbine braking modes are considered.
References
[1] Troitskii N.I. Primenenie nakopitelei energii – radikal’nyi sposob uluchsheniia toplivnoi ekonomichnosti nazemnykh mashin s gazoturbinnym dvigatelem [Using Energy Accumulators is the Radical Way for Improving Efficiency of Ground-Based Vehicles with Gas-Turbine Engines]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Ser. Mechanical Engineering]. 2014, no. 3(96), pp. 110–119.
[2] Moliakov V.D., Kunikeev B.A. Osobennosti proektirovaniia effektivnykh turbin s uchetom vliianiia radial’nogo zazora [Designing efficient turbines taking into account radial clearance]. Izvestiia vysshikh uchebnykh zavedenii. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building]. 2014, no. 9(654), pp. 9–18.
[3] Moliakov V.D., Tumashev R.Z. Osobennosti proektirovaniia protochnykh chastei turbin gazoturbinnykh ustanovok v zavisimosti ot sostava i parametrov rabochei sredy [Peculiarities of Designing Turbine Flow Sections for Gas-Turbine Facilities]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Ser. Mechanical Engineering]. 2003, no. 2(51), pp. 52–62.
[4] Troitskii N.I. Tormoznye kharakteristiki dvukhval’nogo transportnogo GTD s reguliruemym soplovym apparatom silovoi turbiny [Brake features double-shaft turbine engine vehicle with an adjustable nozzle assembly of the power turbine]. Trudy Vsesoiuznoi mezhvuzovskoi konferentsii po gazoturbinnym i kombinirovannym ustanovkam, iiun’, 1970 [Proceedings of the All-Union Inter-University Conference on gas turbine and combined installations, June 1970]. Moscow, 1971, pp. 182–191.
[5] Venediktov V.D., Granovskii A.V., Karelin A.M., Kolesov A.N., Mukhtarov M.Kh. Atlas eksperimental’nykh kharakteristik ploskikh reshetok okhlazhdaemykh gazovykh turbin [Atlas experimental characteristics of planar arrays of cooled gas turbines]. Moscow, TsIAM publ., 1990. 393 p.
[6] Babkin V.I., Tskhovrebov M.M., Solonin V.I., Lanshin A.I. Razvitie aviatsionnykh GTD i sozdanie unikal’nykh tekhnologii [The development of gas turbine engines and the creation of unique technologies]. Dvigatel’ [Engine]. 2013, no. 2(86), pp. 2–7.
[7] Sirotin N.N., Novikov A.S., Paikin A.G., Sirotin A.N. Osnovy konstruirovaniia, proizvodstva i ekspluatatsii aviatsionnykh gazoturbinnykh dvigatelei i energeticheskikh ustanovok v sisteme CALS tekhnologii. V 3-x kn. Kn. 1 [Fundamentals of design, manufacture and operation of the aircraft gas turbine engines and power plants in the CALS technologies: vol. 1]. Moscow, Nauka publ., 2011. 1087 p.
[8] Ivanov M.Ia., Pochuev V.P. Problemy sozdaniia vysokotemperaturnykh turbin sovremennykh aviatsionnykh dvigatelei [The problems of creating high turbines modern aircraft engines]. Konversiia v mashinostroenii [Conversion in machine building of Russia]. 2000, no. 5, pp. 34–46.
[9] Kuzmenko M.L., Nagoga G.P., Karelin D.V. Sposoby razresheniia protivorechivykh trebovanii pri proektirovanii vysokotemperaturnykh gazovykh turbin [The ways of resolving conflicting requirements when designing high-temperature gas turbines]. Aviadvigateli 21 veka: materialy konferentsii [Aircraft engines 21 century: conference materials]. Moscow, TsIAM publ., 2010, pp. 261–266.
[10] Nagoga G.P., Karelin D.V., Didenko R.A. Kompromissnoe reshenie protivorechivykh trebovanii kak printsip mnogofaktornogo proektirovaniia vysokotemperaturnykh okhlazhdaemykh turbin [A compromise of conflicting claims as the principle of multi-factor design of high-cooled turbines]. Trudy nauchno–tekhnicheskogo kongressa po dvigatelestroeniiu (NTKD-2012) [Proceedings of the Scientific and Technical Congress on engine building (NTKD-2012)]. Moscow, ASSAD publ., 2012, pp. 55–60.
[11] Inozemtsev A.A., Sandratskii V.L. Gazoturbinnye dvigateli [Gas turbine engines]. Perm’, OAO Aviadvigatel’ publ., 2006. 1204 p.
[12] Lattime S.B., Steinetz B.M. High-Pressure-Turbine Clearance Control Systems: Current Practices and Future Directions. Journal of Propulsion and Power, 2004, vol. 20, no. 2, pp. 302–311.