Numerical Simulation of Limiting States of Self-Propelled Boom Cranes
Authors: Vatulin Y.S., Potakhov D.A., Potakhov E.A. | Published: 28.04.2018 |
Published in issue: #4(697)/2018 | |
Category: Transportation and Power Engineering | |
Keywords: numerical simulation, physical simulation, microcontroller Arduino Nano, self-propelled boom crane |
There are significant difficulties in conducting practical studies of the limiting states of self-propelled boom cranes, therefore it is advisable to use computer simulation with specialist Simulation and Motion functions of the CAD software SolidWorks and MATLAB. A technique is developed for the numerical simulation of limiting states of a technical object on the basis of wavelet analysis of oscillatory processes of structural elements under non-normalized loading. The technique for the numerical simulation of the limiting states of a technical object consists of the following sequential actions: geometric modeling of the object, determining the rigidity properties of the structure, performing experiments on the technical object and the numerical model, processing the oscillation process data, and bringing dynamic properties of the virtual model in line with the prototype by obtaining convergence of their oscillatory processes. In order to finetune the developed technique, research on the physical prototype was performed. The results obtained provide an opportunity to conduct further numerical experiments on a virtual model of a technical object.
References
[1] Daubechies I. Ten Lectures on Wavelets. Izhevsk, RHD publ., 2001. 464 p.
[2] Balitskii F.Ia., Genkin M.D., Ivanova M.A., Sokolova A.G., Khomiakov E.I. Sovremennye metody i sredstva vibratsionnoi diagnostiki mashin i konstruktsii [Modern methods and means of vibration diagnostics of machines and structures]. Moscow, MTsNTI publ., 1990. 114 p.
[3] Sannikov R.Kh. Teoriia podobiia i modelirovaniia. Planirovanie inzhenernogo eksperimenta [Theory of similarity and modeling. Planning of the engineering experiment]. Ufa, USNTU publ., 2010. 214 p.
[4] Kirichenko I.G. Komp’iuternoe i fizicheskoe modelirovanie stroitel’nykh i dorozhnykh mashin [Computer and physical simulation of construction and road machines]. Vestnik Khar’kovskogo Natsional’nogo avtomobil’no-dorozhnogo universiteta [Bulletin of Kharkov National Automobile and Highway University]. 2014, is. 65–66. Available at: http://dspace.khadi.kharkov.ua/dspace/handle/123456789/973 (accessed 15 November 2017).
[5] Gukhman A.A. Vvedenie v teoriiu podobiia [Introduction to the theory of similarity]. Moscow, LKI publ., 2018. 296 p.
[6] Sedov L.I. Metody podobiia i razmernosti v mekhanike [Similarity and dimension methods in mechanics]. Moscow, Nauka publ., 1987. 430 p.
[7] Tsytovich N.A. Mekhanika gruntov [Soil mechanics]. Moscow, Vysshaia shkola publ., 1983. 288 p.
[8] Aliamovskii A.A. Inzhenernye raschety v SolidWorks Simulation [Engineering calculations and SolidWorks Simulation]. Moscow, DMK Press, 2010. 464 p.
[9] Aliamovskii A.A., Sobachkin E.V., Odintsov A.I., Kharitonovich N.B., Ponomarev A.A. SolidWorks. Komp’iuternoe modelirovanie v inzhenernoi praktike [SolidWorks. Computer modeling in engineering practice]. Sankt-Petersburg, BKhV-Peterburg publ., 2008. 1040 p.
[10] Vatulin Ia.S., Korovin S.K., Korovina M.S., Orlov S.V., Potakhov D.A., Potakhov E.A. Bezopasnoe primenenie mobil’nykh pod"emnikov s rabochimi platformami na osnove rezul’tatov naturnykh i virtual’nykh eksperimentov [Safe operation of mobile elevating work platforms on the basis of results of full-scale and virtual experiments]. Izvestiia Peterburgskogo universiteta putei soobshcheniia [Proceedings of Petersburg Transport University]. 2016, is. 2(47), pp. 255–268.
[11] Vatulin Ia.S., Potakhov D.A., Potakhov E.A. Modelirovanie poteri ustoichivosti svobodno stoiashchikh strelovykh samokhodnykh kranov [Modeling buckling of freestanding self-propelled jib cranes]. Tekhnika zheleznykh dorog [Railway Equipment]. 2016, no. 4(36), pp. 60–67.
[12] Blum D. Izuchaem Arduino: instrumenty i metody tekhnicheskogo volshebstva [Learning Arduino: tools and techniques of technical magic]. Sankt-Petersburg, BKhV-Peterburg publ., 2015. 336 p.
[13] Sommer U. Programmirovanie mikrokontrollernykh plat Arduino/Freeduino [Programming microcontroller cards Arduino/Freeduino]. Sankt-Petersburg, BKhV-Peterburg publ., 2016. 256 p.
[14] Omel’chenko E.Ia., Tanich V.O., Maklakov A.S., Kariakina E.A. Kratkii obzor i perspektivy primeneniia mikroprotsessornoi platformy Arduino [Summary and prospects of applications of microprocessor platform Arduino]. Elektrotekhnicheskie sistemy i kompleksy [Electrotechnical Systems and Complexes]. 2013, is. 21, pp. 28–33.
[15] Smolentsev N.K. Osnovy teorii veivletov. Veivlety v MATLAB [Fundamentals of the theory of wavelets. Wavelets in MATLAB]. Moscow, DMK-Press, 2015. 630 p.
[16] Mallat S. A Wavelet tour of signal processing. Moscow, Mir publ., 2005. 671 p.
[17] Vorob’ev V.I., Gribunin V.G. Teoriia i praktika veivlet-preobrazovaniia [Theory and practice of wavelet transform]. Sankt-Petersburg, VUS publ., 1999. 204 p.