Numerical analysis of the elastic membrane element of a resistance strain gauge force sensor
Authors: Gavryushina N.T., Nepochatov A.V., Godzikovskiy V.A. | Published: 14.11.2013 |
Published in issue: #10(643)/2013 | |
Category: Transportation and Power Engineering | |
Keywords: force sensor, membrane elastic element, computer modeling, elastic characteristics, measurement error |
The problem of efficient and accurate weighing of goods transported by road and rail remains urgent and requires improving specialized weighing equipment. This paper proposes a new approach to calculate and design the force measuring membrane of an industrial scale force sensor based on modern methods of computer simulation. The causes of sensor errors are discussed. The conditions for reducing the nonlinearity and hysteresis of elastic characteristics due to geometric nonlinearity and dry friction in bearings are analyzed. The finite element method is used to compute efficient geometrical parameters of the elastic element to significantly reduce the measurement error. The results of the study are implemented in the analysis and design of real structures.
References
[1] Ştefãnescu D.M. Handbook of force transducers: principles and components. Berlin, Springer-Verlag, 2011. 612 p.Handbook of force transducers: principles and components. Berlin, Springer-Verlag, 2011. 612 p.
[2] Proektirovanie datchikov dlia izmereniia mekhanicheskikh velichin [Design of sensors for the measurement of mechanical quantities]. Ed. Osadchii E.P. Moscow, Mashinostroenie publ., 1979. 480 p.
[3] Kostikov K., Chukan I. Tenzometricheskie datchiki sily [Strain gauge load cells]. Komponenty i tekhnologii [Components & Technologies]. 2010, no. 1, pp. 16—18.
[4] Frederick P. Hohnstadt, John D. Davis. Method for designing a load cell. Patent USA no. 6351998, classification international: G01N 19/00, 2002.
[5] Titus S.S.K., Kamlesh K. Jain, S.K. Dhulkhead, Poonam Yadav. Design and development of precision artifact for dissemination of low forces of 1N and 2N. 19 IMEKO World Congress, Fundamental and Applied Metrology, September 6—11, 2009, Lisbon, Portugal.
[6] Ponomarev S.D., Andreeva L.E. Raschet uprugikh elementov mashin i priborov [Calculation of the elastic elements of machines and devices]. Moscow, Mashinostroenie publ., 1980. 326 p.
[7] Kaplun A.B., Morozov E.M., Olfer’eva M.A. ANSYS v rukakh inzhenera: Prakticheskoe rukovodstvo [ANSYS in the hands of the engineer: A Practical Guide]. Moscow, Editorial URSS publ., 2004. 272 p.
[8] Zenkevich O. Metod konechnykh elementov v tekhnike [Finite element method in the art]. Moscow, Mir publ., 1975. 541 p.
[9] Gavriushin S.S., Baryshnikova O.O., Boriskin O.F. Chislennye metody v dinamike i prochnosti mashin [Numerical methods in dynamics and strength of machines]. Moscow, Bauman Press, 2012. 492 p.
[10] Robinson G.M. Finite element modelling of load cell hysteresis. Measurement, 1997, vol. 20, issue 2, pp. 103—107.
[11] Troitskii V.A., Petukhov L.V. Optimizatsiia formy uprugikh tel [Shape optimization of elastic bodies]. Moscow, Nauka publ., 1982. 432 p.
[12] Kamble V.A., Gore P.N. Use of FEM and photo elasticity for shape optimisation of S type load cell. Indian Journal of Science and Technology, 2002, vol. 5, no. 3 (Mar 2012).