Evaluation of duty cycle parameters of an HCCI-supercharged engine at various loads and rotational speeds of the crankshaft
Authors: Kamaltdinov V.G., Markov V.A., Dragunov G.D. | Published: 30.05.2014 |
Published in issue: #6(651)/2014 | |
Category: Transportation and Power Engineering | |
Keywords: duty cycle, indicator diagram, engine crankshaft, rotational speed |
The duty cycle parameters of the engine with spontaneous ignition of a homogeneous charge (HCCI engine) are largely determined by speed and load modes. To investigate the influence of the parameters of a working medium in the cylinder of the HCCI-engine, a design procedure is developed. The procedure is based on the equation for determining the pressure of a variable-mass working medium at the end of an elementary calculation section of the indicator diagram. The numerical analysis of the duty cycle under different loads and speeds of the HCCIengine crankshaft is performed. The engine is developed from the CHN13/15 diesel provided by ChTZ-URALTRAC Ltd. and uses the fuel which is a mixture of natural gas and dimethyl ether. It was found that increasing the cycle fuel supply from 0.13 to 0.18 g at the engine speed n = 2100 min–1, the boost pressure pa = 0.24 MPa, and the mass fraction of dimethyl ether φDME = 0.27 causes an almost linear increase in the mean indicated pressure pi from 1.01 to 1.87 MPa. Reducing the engine rotational speed from 2100 to 1000 min–1 deteriorates indicator parameters by about 2% if the other parameters are constant.
References
[1] Markov V.A., Gaivoronskii A.I., Grekhov L.V., Ivashchenko N.A. Rabota dizelei na netraditsionnykh toplivakh [Work on non-conventional diesel fuels]. Moscow, Legion-Avtodata publ., 2008. 464 p.
[2] Kong S.C. A study of natural gas/DME combustion in HCCI engines using CFD with detailed chemical kinetics. Fuel, 2007, no. 86, pp. 1483–1489.
[3] Luszcz P.M. Combustion Diagnostics in Homogeneous Charge Compression Ignition Optical and Thermal Single Cylinder Engines. University of Birmingham. 2009. 293 p. Available at: http://etheses.bham.ac.uk/524/1/Luszcz09PhD.pdf (accessed 10 March 2014).
[4] Chen Z., Konno M., Oguma M., Yanai T. Experimental study of CI natural-gas/DME homogeneous charge engine, SAE Technical Paper Series, 2000, no. 2000-01-0329. 10 p. Doi:10.4271/2000-01-0329.
[5] Kamaltdinov V.G., Dragunov G.D., Markov V.A. Prognozirovanie pokazatelei rabochego tsikla HCCIdvigatelia s nadduvom pri razlichnykh nagruzkakh i chastotakh vrashcheniia [Supercharged HCCI Engine: Prediction of Combustion Parameters at Varying Load and Speed]. Dvigatelestroenie [Engine Building]. 2013, no. 3, pp. 9–15.
[6] Gusakov S.V., Epifanov I.V. Issledovanie HCCI protsessa s ispol’zovaniem odnozonnoi khimiko-kineticheskoi modeli goreniia [Zero-dimentional chemical-kinetics HCCI research]. Vestnik RUDN. Ser. Inzhenernye issledovaniia [Bulletin of PFUR. Ser. Engineering studies]. 2008, no. 2, pp. 67–73.
[7] Zlotin G.N., Fedianov E.A., Itkis E.M., Kuz’min V.N. Matematicheskoe modelirovanie indikatornogo protsessa v dvigatele s samovosplameneniem ot szhatiia gomogennoi metano-vozdushnoi smesi [Mathematical modeling of the indicator process in the engine with a compression-ignition homogeneous methane-air mixture]. Sbornik nauchnykh trudov po materialam mezhdunarodnoi konferentsii Dvigatel’-2007, posviashchennoi 100-letiiu shkoly dvigatelestroeniia MGTU im. N. E. Baumana [Collection of scientific papers based on an international conference Engine-2007, on the 100th anniversary of the school engine Bauman Moscow State Technical University]. Moscow, 2007, pp. 57–61.
[8] Kamaltdinov V.G. Novaia model’ protsessa goreniia topliva v DVS [New Model of Fuel Combustion in Diesel Engines]. Dvigatelestroenie [Engine building]. 2008, no. 3(233), pp. 17–20.
[9] Kamaltdinov V.G., Nikiforov S.S. Upravlenie rabochim protsessom v HCCI-dvigatele [Combustion Control in HCCI Engine]. Dvigatelestroenie [Engine building]. 2010, no. 3(241), pp. 3–9.
[10] Kamaltdinov V.G., Markov V.A. Vliianie temperatury ognevoi poverkhnosti tsilindra na protsess sgoraniia i pokazateli rabochego tsikla HCCI-dvigatelia [Influence of the cylinder hot surface temperature on the combustion process and on the HCCI engine working cycle characteristics]. Gruzovik [Truck]. 2010, no. 12, pp. 38–47.
[11] Kamaltdinov V.G., Markov V.A. Vliianie geometricheskoi stepeni szhatiia i ugla zakrytiia vpusknykh klapanov na protsess sgoraniia i pokazateli rabochego tsikla HCCI-dvigatelia s nadduvom [The Influence of Geometrical Degree of Compression and Angle of Closing Inlet Valves on The Process of Combustion And The Indicators of Working Cycles of HCCI Engine with Supercharge]. Avtogazozapravochnyi kompleks + al’ternativnoe toplivo [AutoGas Filling Complex+ Alternative Fuel]. 2011, no. 2(56), pp. 9–16.
[12] Kamaltdinov V.G., Markov V.A., Khripupov S.A. Raschetnoe issledovanie vliianiia retsirkuliatsii otrabotavshikh gazov na pokazateli rabochego tsikla HCCI-dvigatelia [Calculated investigation of infl uence of waste gases recirculation on working cycles indicators in the HCCI engine]. Avtogazozapravochnyi kompleks + al’ternativnoe toplivo [AutoGas Filling Complex+ Alternative Fuel]. 2011, no. 4(58), pp. 25–32.
[13] Kamaltdinov V.G. Utochnennaia metodika rascheta parametrov rabochego tela na puskovykh rezhimakh dizelia [Method of Analysis of Work Medium Parameters as Applied to Engine Starting Condition]. Dvigatelestroenie [Engine building]. 2008, no. 2(232), pp. 31–34.
[14] Fedianov E.A., Itkis E.M., Kuz’min V.N. Osobennosti teplootdachi v stenki tsilindra dvigatelia s samovosplameneniem gomogennoi toplivovozdushnoi smesi [Properties of heat transfer in the cylinder wall of the engine with a homogenous air-fuel mixture autoignition]. Izvestiia VolgGTU. Ser. Protsessy preobrazovaniia energii i energeticheskie ustanovki [Proceedings VSTU. Ser. Processes of energy conversion and power plants]. 2009, no. 7, pp. 72–74.
[15] Kamaltdinov V.G. Organizatsiia effektivnogo protsessa sgoraniia topliva dlia perspektivnogo porshnevogo dvigatelia vnutrennego sgoraniia. Diss. dokt. tekh. nauk [Organization of effective combustion process for prospective piston internal combustion engine. Dr. tech. sci. diss.]. Cheliabinsk, 2012. 24 p.