Improving the efficiency of a bypass turbofan engine by intermediate cooling during compression
Authors: Ivanov V.L., Shegolev N.L., Skibin D.A. | Published: 13.11.2014 |
Published in issue: #11(656)/2014 | |
Category: Technology and Process Machines | |
Keywords: low-pressure compressor, high-pressure compressor, high-pressure turbine, low-pressure turbine, intermediate cooling, fan, total thrust, specific fuel consumption. |
The preliminary analysis of the current state and trends of the development of aircraft gas turbine engines such as turbojets, turboprops, turbofans, etc. shows the importance of the theoretical study and design research aimed at improving the efficiency of turbofan engines by implementing regeneration cycles, intermediate cooling during compression, intermediate heating during expansion, and their possible combinations. A thermodynamically reasonable structure that can easily be implemented and does not require significant structural modifications of the gas generator was chosen to perform the analysis. The heat accumulated during the intermediate inlet air cooling in the high-pressure compressor was recovered by heating the air in the second contour. The excessive turbine capacity of the high-pressure compressor was redistributed between low- and high-pressure turbines to increase the fan capacity, that is, the air flow through the second contour. The results of the study are presented for a model turbofan engine whose parameters are similar to those of the D-436 turbofan engine used in civil aviation. The implemented intermediate cooling increases the total turbofan thrust by 20...22 % and reduces the specific fuel consumption by 2.5...3 % depending on the thermal resistance of heat exchangers.
References
[1] Beknev V.S., Ivanov V.L. A possible method for raising the power capacity and economic efficiency of stationary combined-cycle power plants equipped with gas turbines. Thermal Engineering, 2005, vol. 52, no. 6, pp. 481–486.
[2] Inozemtsev A.A., Sandratskii V.L. Gazoturbinnye dvigateli [Gas turbine engines]. Perm’, OAO Aviadvigatel’ publ., 2006. 1202 p.
[3] Belopotapov O.F., Voshchinin S.A., Gnedenko V.G., Goriachev I.V. Vozmozhnye modeli ekonomicheski rentabel’noi realizatsii tekhnologii plazmotermicheskoi pererabotki tverdykh bytovykh otkhodov v Rossii [Probable models of economically profitable realization of plasmothermal processing technology for solid domestic garbage]. Konversiia v mashinostroenii [Conversion of engineering]. 2007, no. 4-5, pp. 99–103.
[4] Evstigneev A.A., Korovkin V.D.,Tskhovrebov M.M., Shliakhtin V.E. Mezhdistsiplinarnoe matematicheskoe modelirovanie TRDD slozhnykh tsiklov [Interdisciplinary mathematical modeling engine complicated cycles]. 12 Vserossiiskaia mezhvuzovskaia nauchnotekhnicheskaia konferentsiia «Gazoturbinnye i kombinirovannye ustanovki i dvigateli» [12 All-Russia interuniversity scientific and technical conference «Gas Turbine and combined engines and motors»]. Moscow, Bauman Press, 2004. 56 p.
[5] Eliseev Iu.S., Manushin E.A., Mikhal’tsev V.E., Osipov M.I. Teoriia i proektirovanie gazoturbinnykh i kombinirovannykh ustanovok [Theory and design of gas-turbine and combined units]. Moscow, Bauman Press, 2000. 640 p.
[6] Osipov M.I. Povyshenie effektivnosti i udel’noi moshchnosti gazoturbinnykh i kombinirovannykh ustanovok [Increase of efficiency and power density of gas-turbine and combined units]. 12 Vserossiiskaia mezhvuzovskaia nauchno-tekhnicheskaia konferentsiia «Gazoturbinnye i kombinirovannye ustanovki i dvigateli» [12 All-Russia interuniversity scientific and technical conference «Gas Turbine and combined engines and motors»]. Moscow, Bauman Press, 2004. 13 p.
[7] Ivanov V.L. Dvukhkonturnyi vozdushno-reaktivnyi dvigatel’ [Dual-circuit air-jet engine]. Avtorskoe svidetel’stvo SSSR no. 209148, 1964.
[8] Ivanov V.L., Leont’ev A.I., Manushin E.A., Osipov M.I. Teploobmennye apparaty i sistemy okhlazhdeniia gazoturbinnykh i kombinirovannykh ustanovok [Heat exchangers and cooling systems for gas turbine and combined units]. Moscow, Bauman Press, 2004. 592 p.
[9] Eliseev Iu.S., Krymov V.V., Manushin E.A., Surovtsev I.G. Konstruirovanie i raschet na prochnost’ turbomashin gazoturbinnykh i kombinirovannykh ustanovok [Design and calculation of the strength of turbomachines gas-turbine and combined units]. Moscow, Bauman Press, 2009. 519 p.
[10] Lanshin A.I., Polev A.S. Perspektivnye napravleniia razvitiia dvigatelei dlia magistral’nykh samoletov grazhdanskoi aviatsii [Perspective directions of development of engines for main civil aircraft]. Mezhdunarodnyi forum dvigatelestroeniia. Nauchno-tekhnicheskii kongress po dvigatelestroeniiu, (NIKD-2014) [International forum engine. Scientific-technical Congress on engine building (NICD-2014)]. Moscow, CIAM publ., 2014, pt. 1, pp. 5–7.
[11] Zamfort B.S. Osnovnye etapy razvitiia TRDD dlia passazhirskikh samoletov [Main stages of development of the turbofan engines for passenger aircraft]. Mezhdunarodnyi forum dvigatelestroeniia. Nauchno-tekhnicheskii kongress po dvigatelestroeniiu, (NIKD-2014) [International forum engine. Scientific-technical Congress on engine building (NICD-2014)]. Moscow, CIAM publ., 2014, pp. 22–24.
[12] Aviadvigatelestroenie. Entsiklopediia [Engine aircraft. Encyclopedia]. Ed. Chuiko V.M. Moscow, Aviamir publ., 1999. 300 p.
[13] Antonov A.I., Baranov Iu.F., Markov Iu.S. Vysokoeffektivnye toplivovozdushnye teploobmenniki sistem aviatsionnykh GTD [Highly efficient fuel-air heat exchangers systems aircraft GTE]. 12 Vserossiiskaia mezhvuzovskaia nauchno-tekhnicheskaia konferentsiia «Gazoturbinnye i kombinirovannye ustanovki i dvigateli» [12 All-Russia interuniversity scientific and technical conference «Gas Turbine and combined engines and motors»]. Moscow, Bauman Press, 2004, pp. 103–104.