Sensitivity of internal disturbances of a panel structure comprising a rotor to variations of lumped masses
Authors: Arinchev S.V., Rachkin D.A. | Published: 12.01.2015 |
Published in issue: #1(658)/2015 | |
Category: Technology and Process Machines | |
Keywords: internal disturbances, forced vibrations, rotor, lumped mass, sensitivity |
Spacecraft internal disturbances are forced vibrations of high-precision devices such as cameras, telescopes, aiming devices, etc. under the action of centrifugal forces generated in the rotor bearing (control-system flywheel) with standard residual unbalance. The accuracy of attitude-control systems of Earth remote sensing satellites and interplanetary space vehicles is required to be several seconds of arc. In this case, the standard residual unbalance of the rotor may cause unacceptable disturbances. Traditionally, they are damped using special active and passive rotor supports. The paper shows that choosing appropriate lumped masses of a spacecraft may help solve the problem. The sensitivity of internal disturbances to variations of lumped masses is analyzed. It is found that increasing the angular velocity of the rotor may significantly change the influence of variations of lumped masses.
References
[1] Pong C.M., Lim S., Smith M.W., Miller D.W., Villasenor J.S., Seager S. Achieving highprecision pointing on exoplanetsat: initial feasibility analysis. Proceedings of SPIE — The In ternational Society for Optical Engineering, San Diego, California, USA, 2010, vol. 7731, no. 73311V.
[2] ISO 1940-1:2003. Mechanical vibration — Balance quality requirements for rotors in a constant (rigid) state. Part 1: Specification and verification of balance tolerances. Moscow, Standartinform publ., 2007.
[3] Denisova A.A., Tveriakov O.V., Britova Iu.A. Razrabotka metodiki opredeleniia vozmushchaiushchikh momentov upravliaemykh dvigatelei-makhovikov na siloizmeritel'nom stende [Development of disturbance moments definition method for working reaction flywheels assemblies installed on the special forces measuring stand]. Vestnik sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni M.F. Reshetneva [Vestnik Sibirskogo Gosudarstvennogo Aerokosmicheskogo Universiteta imeni akademika M.F. Reshetneva]. 2014, no. 1(53), pp. 124–127.
[4] Akisanya O.A. Reaction wheel vibrational force disturbance input to the design of a six-axis multi-configurable hexapod insolator. Master of Science dissertation. USA, California State University, Long Beach, 2002.
[5] Vaillon L., Philippe C. Passive and active macro-vibration control for very high pointing accuracy space systems. Smart materials and structures, 1999, vol. 8, no. 6, pp. 719–728.
[6] Leont’ev M.K., Fomina O.N. Aktivnoe upravlenie zhestkost’iu opornykh uzlov rotorov. Konstruktsiia i staticheskii analiz [An active stiffness control for bearing support of gasturbineengine rotors. Structure and static analysis]. Vestnik moskovskogo aviatsionnogo institute [Vestnik moskovskogo aviatsionnogo instituta]. 2007, vol. 14, no. 4, p. 17.
[7] Kamesh D., Pandiyan R., Ashitava Chosal. Passive vibration isolation of reaction-wheel disturbances using a low-frequency space platform. Journal of Sound and Vibration, 2012, vol. 331, issue 6, pp. 1310–1330.
[8] Troitskii A.V. Matematicheskie modeli i metody analiza chuvstvitel'nosti v zadachakh optimizatsii konstruktsii rotorov. Diss. kand. tekhn. nauk [Mathematical models and methods of sensitivity analysis in design optimization problems rotors. Cand. tehn. sci. diss.]. Moscow, 2006. 163 p.
[9] Temis Iu.M., Temis M.Iu., Egorov A.M. Issledovanie chuvstvitel'nosti kolebanii rotora statsionarnoi GTU na podshipnikakh skol'zheniia k izmeneniiu osnovnykh parametrov sistemy [Study of vibration sensitivity of a rotor of stationary gas-turbine unit on slide bearings to change of main settings of the system]. Izvestiia MGTU «MAMI» [Proceedings ofthe MSTU «MAMI»]. 2013, vol. 3, no. 1(15), pp. 139–147.
[10] Tushev O.N., Berezovskii A.V. Chuvstvitel'nost' sobstvennykh znachenii i vektorov k variatsiiam parametrov konechno-elementnykh modelei konstruktsii [Sensitivity of EigenValues and Vectors for Variations of Parameters of Finite Element Models of Construction]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the BaumanMoscow State State Technical University. Mechanical Engineering]. 2007, no. 1, pp. 35–45.
[11] Arinchev S.V. Teoriia kolebanii nekonservativnykh sistem [Vibration theory of nonconservative systems]. Moscow, Bauman Press, 2002. 464 p.