Actual problems of modern tribotechnology and ways of solution
Authors: Shapovalov V.V., Sladkowski A., Erkenov A.Ch. | Published: 12.01.2015 |
Published in issue: #1(658)/2015 | |
Category: Technology and Process Machines | |
Keywords: friction system, amplitude and phase response, prediction, physical and mathematical modeling |
The reliability and efficiency of mechanical systems largely depend on the reliability and efficiency of friction joints. In turn, the reliability and efficiency of friction joints is determined by the interaction of dynamic processes in friction and mechanical subsystems. However, these issues are not considered in the scientific literature, and there is no description of standard methods and techniques to assess the interference of dynamic processes in mobile friction systems. Unlike theoretical and experimental data available in the literature, this paper states that the interaction of dynamic processes in mechanical subsystems and friction contacts must be taken into account when conducting laboratory and bench tests of mechanical systems with friction joints. The proposed approach implies that identical operating conditions for the full-scale and physical models of the tribocontact, identical parameters of the macro- and microroughness of contacting surfaces, identical natural frequencies and modes of vibration, and identical physical and mechanical properties of the friction contact can be provided by recording the amplitude and phase response and a number of indirect integral dissipative parameters in the specified octave (fractional octave) band. To estimate the tribosystem stability, the complex transmission coefficient is calculated on the basis of the analysis of oscillations normal and tangential to the friction contact surface. One of the most efficient ways to study nonlinear friction systems is physical and mathematical modeling. In this case, a quasi-linear subsystem is described by a system of differential equations used to construct an equivalent model of the mechanical subsystem. The friction processes are described by criteria equations. The proposed criteria equations are used to formulate conditions of the physical experiment to ensure accurate results corresponding to natural conditions. The proposed methods, techniques, and principles improve the validity of studies of nonlinear systems and form the theoretical basis for the dynamic monitoring and optimization of mechanical systems with friction joints.
References
[1] Shapovalov V.V. Teoreticheskie osnovy tribospektral'noi identifikatsii protsessov treniia. Diss. dokt. tekhn. nauk [Theoretical Foundations tribospektralnoy identification of friction. Dr. tech. sci. diss.] Moscow, VNIIZhT publ., 1988.
[2] Shcherbak P.N. Optimizatsiia friktsionnykh mekhanicheskikh sistem na baze model'nogo eksperimenta. Diss. dokt. tekhn. nauk [Optimization of frictional mechanical systems on the basis of the model experiment. Dr. tech. sci. diss.]. Rostov-on-Don, 2002. 43 p.
[3] Shapovalov V.V., Chelokh'ian A.V., Lubiagov A.M., Vorob'ev V.B., Shcherbak P.N., Oziabkin A.L., Mogilevskii V.A., Okulova E.S., Shub M.B., Butov E.S., Kikichev Sh.V., Zaikin D.S., Rodin A.E., Konovalov D.S., Aleksandrov A.A., Kharlamov P.V., Voronin V.N., Shaposhnikov I.A. Sposob ispytanii uzlov treniia [Test Method of friction units]. Patent RF no.2343450 RF, MPK G 01 N 3/56. 2009.
[4] Shapovalov V.V., Koropets P.A., Shub M.B. Matematicheskoe modelirovanie dinamicheskoi sistemy «Ekipazh–put'» [Mathematical modeling of dynamic systems «Crew–way»]. Vestnik RGUPS [Bulletin RSTU]. 2000, no. 2, pp. 131–137.
[5] Shapovalov V.V., Oziabkin A.L., Kharlamov P.V. Primenenie metodov fizikomatematicheskogo modelirovaniia i tribospektral'noi identifikatsii dlia monitoringa friktsionnykh mekhanicheskikh system [Application of physical-mathematical modeling methods and of tribospectral identification for monitoring of the frictional mechanical systems]. Vestnik mashinostroeniia [Russian Engineering Research]. 2009, no. 5, pp. 49–57.
[6] Shapovalov V.V., Chelokh'ian A.V., Kolesnikov I.V., Oziabkin A.L., Kharlamov P.V. Amplitudofazochastotnyi analiz kriticheskikh sostoianii friktsionnykh system [Amplitude-phasefrequency analysis of the critical conditions of frictional systems]. Moscow, GOU «Uchebno-metodicheskii tsentr po obra-zovaniiu na zheleznodorozhnom transporte» publ., 2010. 383 p.
[7] Oziabkin A.L. Dinamicheskii monitoring tribosistemy «Podvizhnoi Costav–put'» [Dynamic monitoring of railway tribosystems]. Vestnik RGUPS [Bulletin RSTU]. 2011, no. 2, pp. 35–47.
[8] Oziabkin A.L., Kolesnikov I.V. Metody povysheniia nadezhnosti rez'bovykh soedinenii tormoznykh sistem vagonov [Methods to increase the reliability of carving connections of brake systems of cars]. Vestnik RGUPS [Bulletin RSTU]. 2011, no. 4, pp. 67–75.
[9] Oziabkin A.L., Kolesnikov I.V., Kharlamov P.V. Monitoring tribotermodinamiki friktsionnogo kontakta mobil
[10] Oziabkin A.L. Teoreticheskie osnovy dinamicheskogo monitoringa friktsionnykh mobil'nykh system [Theoretical bases of dynamic monitoring of frictional mobile systems]. Trenie i smazka v mashinakh i mekhanizmakh [Friction and lubrication in machinery]. 2011, no. 10, pp. 17–28.
[11] Shapovalov V.V., Lubiagov A.M., Vyshchepan A.L., Shcherbak P.N., Oziabkin A.L., Kharlamov P.V., Okulova E.S., Korobeinikov T.A., Aleksandrova E.A., Feizov E.E., Feizova V.A., Sisiukin I.P., Manturov D.S., Manturova E.A., Semenov R.Iu., Pronin V.V., Kostiuk V.V., Kovalenko L.I., Vasil'ev A.N., Ananko A.M. Sposob dinamicheskogo monitoringa friktsionnykh mobil'nykh system [A method for monitoring the dynamic friction of mobile systems]. Patent № 2517946 RF, MPK G 01 N 3/56, 2014.
[12] Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniia. V 5 t. T. 1: Matematicheskie modeli, dinamicheskie kharakteristiki i analiz sistem avtomaticheskogo upravleniia [Methods of classical and modern control theory. In 5 vol. Vol. 1: Mathematical models and dynamic characteristics analysis of automatic control systems]. Ed. Pupkov K.A.,Egupov N.D. Moscow, Bauman Press, 2004. 656 p.