Checking calculations of stresses in gears using ANSYS
Authors: Karatushin S.I., Bildyuk N.A., Pleschanova Y.A., Bokuchava P.N. | Published: 02.04.2015 |
Published in issue: #3(660)/2015 | |
Category: Technology and Process Machines | |
Keywords: residual stress, force calculation, cementation, bending and contact strength, ANSYS |
Active surfaces of most gears are hardened, cemented, or azotized. Therefore, the stressstrain analysis of gear teeth at various stages of action is of great importance. The areas where stresses can attain maximum permissible values can be evaluated using the ANSYS software package. A surface hardened tooth is a bimetallic structure whose surface and core consist of materials with different physical and mechanical properties. Any surface hardening causes changes in the stress-strain state due to the residual stresses that must be taken into account along with the stresses caused by external loads. This approach is based on the corresponding physical model and calculation technique. Classical methods used for calculating the properties of hardened gears do not take into account specific structure and properties of the hardened layer and core. The importance and role of residual stresses in determining permissible stresses, as well as their dependence on the structure and properties of carburized steel, are studied. Shear stresses are computed to evaluate contact strength. Due to the numerical methods applied in ANSYS, the difference between the calculated bending and contact strength is negligible, which makes it possible to use standard mechanical properties rather than empirical coefficients.
References
[1] GOST 21354–87. Peredachi zubchatye tsilindricheskie evol’ventnye vneshnego zatsepleniia. Raschet na prochnost’ [State Standard 21354–87. Cylindrical evolvent gears of external engagement. Strength calculation]. Moscow, Standartinform publ., 1988. 127 p.
[2] Ostriakov Iu.A., Shevchenko I.V. Proektirovanie detalei i uzlov konkurentosposobnykh mashin. St. Petersburg, «Lan’» publ., 2013. 336 p.
[3] Kursovoe proektirovanie detalei mashin [Course design of machine parts]. Ed. Razhikov V.N. St. Petersburg, Politekhnika publ., 2014. 700 p.
[4] Zinchenko V.M. Inzheneriia poverkhnosti zubchatykh koles metodami khimiko-termicheskoi obrabotki [Surface Engineering gears methods of chemical and thermal processing]. Moscow, Bauman Press, 2001. 303 p.
[5] Radchenko V.P., Saushkin M.N. Polzuchest’ i relaksatsiia ostatochnykh napriazhenii v uprochnennykh konstruktsiiakh [Creep and relaxation of residual stresses in reinforced construction]. Moscow, Mashinostroenie–1 publ., 2005. 226 p.
[6] Karatushin S.I., Spiridonov D.V., Pleshanova Iu.A. Ostatochnye napriazheniia v tsilindricheskikh izdeliiakh [Residual stresses in cylindrical articles]. Metallovedenie I termicheskaia obrabotka metallov [Metal science and heat treatment]. 2013, no. 6, pp. 53–55.
[7] Marochnik stalei i splavov [Database of steels and alloys]. Ed. Zubchenko A.S. Moscow, Mashinostroenie publ., 2001. 672 p.
[8] Morozov E.M., Zernin M.V. Kontaktnye zadachi mekhaniki razrusheniia [Contact problems of fracture mechanics]. Moscow, Knizhnyi dom Librokom publ., 2010. 544 p.
[9] Stal’ na rubezhe stoletii [Steel on the turn of the century]. Ed. Karabasov Iu.S. Moscow, MISIS publ., 2001. 489 p.
[10] Terent’ev V.F., Oksogoev A.A. Tsiklicheskaia prochnost’ metallicheskikh materialov [Fatigue strength of metallic materials]. Novosibirsk, NGTU publ., 2001. 61 p.
[11] Berendeev N.N. Primenenie sistemy ANSYS k otsenke ustalostnoi dolgovechnosti [Application of ANSYS to the estimation of the fatigue life]. Nizhnii Novgorod, NGU im. N.I. Lobachevskogo publ., 2006. 84 p.