Shear test experiments for determination of sheet materials hardening curves
Authors: Vlasov A.V., Shitikov A.A. | Published: 17.04.2015 |
Published in issue: #4(661)/2015 | |
Category: Technology and Process Machines | |
Keywords: experiment, sheet materials, shear, cold deformation, hardening curve |
Hardening curves describe properties of a material and are used in the FE simulation of plastic deformation. At present, there is no common method of experimental determination of sheet materials hardening curves under deformations exceeding the values corresponding to the time of necking in tensile tests. An overview of the methods of determination of hardening curves of sheet materials determination at large deformations is provided. The technique of shear test of shaped samples is described for the determination of hardening curves. A new form of shaped samples is proposed. Shear tests of shaped samples under cold deformation are used to describe the technique of testing rolled sheet materials to determine hardening curves. The proposed shape of samples allows to determinate hardening curves with the true strain range up to 0.5. The justification of the possibility of obtaining hardening curves using the proposed method is performed by FE simulation; and the proposed sample shape is validated. It is shown that the proposed shape of the sample makes it possible to perform deformation without failure. Examples of using the technique for determination of hardening curves are provided for a number of materials. ом конечных элементов доказана возможность получения кривых упрочнения с помощью предложенной методики и обоснована рациональная форма образца. Показано, что предложенная форма образца позволяет выполнить деформацию без разрушения. Приведены примеры использования методики для получения кривых упрочнения ряда материалов.
References
[1] Kuwabara T. Advances In Experiments On Metal Sheets And Tubes In Support Of Constitutive Modeling And Forming Simulations. International Journal of Plasticity, 2007, vol. 23, iss. 3, pp. 385–419.
[2] Merklein M., Kuppert A. A Method For The Layer Compression Test Considering The Anisotropic Material Behavior. International Journal of Material Forming, 2009, vol. 2, iss. SUPPL. 1, pp. 483–486.
[3] Alimov A.I., Vlasov A.V. Teoreticheskoe obosnovanie vozmozhnosti postroeniia krivykh uprochneniia s pomoshch’iu ispytanii na szhatie stopki perpendikuliarno ploskosti lista [The theoretical justification of the possibility of constructing hardening curves using compression tests stack perpendicular to the plane of the sheet]. Obrabotka materialov davleniem [Materials processing pressure]. 2013, no. 1(34), pp. 65–72.
[4] Kuwabara T., Morita Y., Miyashita Y., Takahashi S. Elastic-Plastic Behavior of Sheet Metal Subjected to In-plane Reverse Loading. Journal of the Japan Society for Technology of Plasticity, 1995, 36–414, pp. 768–774.
[5] Vlasov A.V., Maistrov Iu.V., Alimov A.I., Ponomarenko A.B. Postroenie krivykh uprochneniia listovykh materialov s pomoshch’iu opytov na prodol’noe szhatie [The construction of hardening curves of sheet materials with the help of tests on the longitudinal compression]. Izvestiia TulGU. Tekhnicheskie nauki [Proceedings of the TSU. Technical sciences]. 2014, iss.10, pt. 1, pp. 43–56.
[6] Sigvant M., Mattiasson K., Vegter H., Thilderkvist P. A viscous pressure bulge test for the determination of a plastic hardening curve and equibiaxial material data. International Journal of Material Forming, 2009, vol. 2, iss. 4, pp. 235–242.
[7] Guner A., Brosius A., Tekkaya A.E. Analysis of the hydraulic bulge test with FEA concerning the accuracy of the determined flow curves. Key Engineering Materials, 2009, vol. 410–411, pp. 439–447.
[8] An Y.G., Vegter H., Heijne J. Development of simple shear test for the measurement of work hardening. Journal of Materials Processing Technology, 2009, vol. 209, iss. 9, pp. 4248–4254.
[9] Miyauchi K. A proposal of a planar simple shear test in sheet metals. Sci. Pap. Inst. Phys. Chem. Res. (Jpn), 1984, vol. 78, no. 3, pp. 27–40.
[10] Bouvier S., Haddadi H., Levee P., Teodosiu C. Simple shear tests: Experimental techniques and characterization of the plastic anisotropy of rolled sheets at large strains. Journal of Materials Processing Technology, 2006, vol. 172, iss. 1, pp. 96–103.
[11] Genevois P. Etude experimental et modelisation du comportement plastique anisotrope de toles dacier en grandes deformations. Ph. D. Thesis, Institut National Polytechnique de Grenoble, France, 1992, 166 p.
[12] Merklein M., Biasutti M. A Contribution to the Optimization of a Simple Shear Test. Key Engineering Materials, 2009, vol. 410–411, pp. 467–472.
[13] Merklein M., Biasutti M. Forward and Reverse Simple Shear Test Experiments for Modeling in Forming Simulations. Special Edition: 10th International Conference on Technology of Plasticity, 2011, pp. 702–707.
[14] Mattiasson K., Sigvant M. Material Characterization and Modeling for Industrial Sheet Forming Simulations. MATERIALS PROCESSING AND DESIGN: Modeling, Simulation and Applications – NUMIFORM 2004-Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes. – AIP Publishing, 2004, vol. 712, no. 1, pp. 875–880.
[15] DEFORM 3D Version 10.1. User’s Manual.
[16] Averkiev A.Iu. Metody otsenki shtampuemosti listovogo metalla [Methods for assessing formability of sheet metal]. Moscow, Mashinostroenie publ., 1985. 176 p.
[17] Botkin A.V., Valiev R.Z., Stepin P.S., Baimukhametov A.Kh. Otsenka povrezhdennosti metalla pri kholodnoi plasticheskoi deformatsii c ispol’zovaniem modeli razrusheniia Kokrofta–Latama [Evaluating the metal damage during cold plastic deformation using the Cockroft–Latham fracture model]. Deformatsiia i razrushenie materialov [Deformation and Fracture of Materials]. 2011, no. 7, pp. 17–22.
[18] Watanabe A., Fujikawa S., Ikeda A., Shiga N. Prediction of Ductile Fracture in Cold Forging. Procedia Engineering, 2014, vol. 81, pp. 425–430.