Experimental study of chip shrinkage for radius rear surface turning tools
Authors: Filippov A.V., Filippova E.O. | Published: 16.06.2015 |
Published in issue: #6(663)/2015 | |
Category: Technology and Process Machines | |
Keywords: chip shrinkage, oblique cutting, deformation |
The determination of chip shrinkage is important because it contributes to the optimal choice of machining modes at the stage of process design. Additionally, the shrinkage makes it possible to determine not only the change of the value, but also the intensity of the temperature and deformation characteristics during the cutting process. The article describes experimental study of the chip shrinkage when steel 45 shafts are machined using radius rear surface turning tools. The scheme for outer longitudinal turning using radius rear surface cutters is described. The cases with positive and negative cutter edge angles are examined. The following parameters are considered as variables: feed in the range of 0.11–0.52 mm/rev., cutting depth in the range of 0.1–0.5 mm, cutting tool angle in the positive and negatives ranges of 30–60°. The influence of the machining parameters on the longitudinal and transverse chip shrinkage is shown through graphs. Based on the results of the study, conclusions on the influence of the turning parameters on the degree and nature of the changes in chip shrinkage have been drawn. The results of the study can be useful for the design of technological process of machining operations and the design of cutting tools.
References
[1] Bobrov V.F., Ierusalimov D.E. Rezanie metallov samovrashchaiushchimisia reztsami [Cutting metal itself rotating cutters]. Moscow, Mashinostroenie publ., 1972. 110 p.
[2] Shvetsov I.V. Opredelenie usadki struzhki pri raznykh znacheniiakh skorosti rezaniia [Determination of chip shrinkage at the different cutting speed values]. Vestnik mashinostroeniia [Russian Engineering Research]. 2005, no. 2, pp. 72–73.
[3] Nekrasov R.Iu., Putilova U.S., Koreshkova E.V., Kharitonov D.A. Model’ sistemy napriazhenii i parametrov deformirovaniia srezaemogo sloia v zone rezaniia [Model of the system of strains and cut-down layer deformation parameters in the cutting zone]. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies]. 2013, no. 4, pp. 83–87.
[4] Popov A.A., Solokha A.I., Chazov P.A. Osobennosti deformatsii struzhki v protsesse tocheniia bezvershinnymi reztsami [Features of strain in the chip turning straight-edge cutters]. Sovremennye problemy nauki i obrazovaniia [Modern problems of science and education]. 2014, no. 4. Available at: www.science-education.ru/118-13966 (accessed 25 January 2015).
[5] Filippov A.V. Opredelenie parametrov secheniia srezaemogo sloia pri kosougol’nom tochenii bezvershinnym reztsom s radiusnoi zadnei poverkhnost’iu [Defining the parameters of the cross section of the shear layer at oblique turning bezvershinnym cutter radiuses rear surface]. STIN [Russian Engineering Research]. 2014, no. 11, pp. 24–28.
[6] Poletika M.F. Teoriia rezaniia: Ch.1: Mekhanika protsessa rezaniia [Cutting Theory: Pt. 1: Mechanics of the cutting process]. Tomsk, TPU publ., 2001. 202 p.
[7] Filippov A.V. Opredelenie parametrov secheniia srezaemogo sloia pri kosougol’nom tochenii bezvershinnym reztsom [Defining the parameters of the cross section of the shear layer at oblique turning bezvershinnym cutter]. STIN [Russian Engineering Research]. 2014, no. 11, pp. 21–25.
[8] Filippov A.V. K raschetu «dopustimoi» geometrii pri bezvershinnom kosougol’nom tochenii [To calculation «permissible» geometry with an oblique cutting straight-edge]. Sovremennye problemy nauki i obrazovaniia [Modern problems of science and education]. 2013, no. 5. Available at: www.science-education.ru/111-10066 (accessed 18 November 2014).
[9] Petrushin S.I., Filippov A.V. Analiz geometrii kosougol’nogo obtachivaniia bezvershinnymi reztsami [The analysis of the geometry of oblique turning peak less cutters]. Obrabotka metallov (tekhnologiia, oborudovanie, instrumenty) [Processing of metals (technology, equipment, tools)]. 2013, no. 2, pp. 8–14.
[10] Filippov A.V. Constructing model of oblique cutting edge. Applied Mechanics and Materials, 2013, vol. 379, pp. 139–144.