Morphology of the silicon carbide surface after micro cutting of molybdenum
Authors: Nosenko V.A., Avilov A.V., Kharlamov V.O., Bakhmat V.I. | Published: 16.06.2015 |
Published in issue: #6(663)/2015 | |
Category: Technology and Process Machines | |
Keywords: silicon carbide, molybdenum, micro cutting, wear site, surface morphology, electronic microscope |
The present research was carried out when molybdenum was micro cut by green silicon carbide crystals. The top of the crystal is cone-shaped with an apex angle of 120° and a radius of curve of 25–30 microns. After the micro cutting, a wear site is formed on the surface of the silicon carbide crystal that is covered with nearly parallel micro cracks. The width of the micro cracks is up to 0.4 microns, the depth is 3–5 microns. The depth of the micro cracks is measured on a micro cross-sectional vertical wall obtained by ion etching of a selected portion of the surface directly in the chamber of the electron microscope Versa 3D. It has been found that molybdenum fills the majority of the cracks formed at the wear site. It penetrates to the depth of 2–3 microns when the crack width at the metal penetration boundary is about 40 nm. The presence of molybdenum and the penetration depth is determined by local micro X-ray spectral analysis. The metal may adhere to the surface of the wear site and form patches. The rate of molybdenum transfer onto the wear site of the silicon carbide crystal is substantially less than when micro cutting titanium and niobium.
References
[1] Lykasov A.A., Ryss G.M., Zhikharev V.M. Metallurgiia vol’frama i molibdena [Metallurgy tungsten and molybdenum]. Cheliabinsk, IuUrGU publ., 2007. 78 p.
[2] Poltoratskii L.M., Iur’ev A.B., Sidorova O.D., Gromov V.E. Metody issledovaniia mikrostruktury i mekhanicheskikh svoistv metallov i splavov [Methods for studying the microstructure and mechanical properties of metals and alloys]. Novokuznetsk, SibGIU publ., 2008. 162 p.
[3] Nosenko V.A. Shlifovanie adgezionno-aktivnykh metallov [Grinding adhesively-active metals]. Moscow, Mashinostroenie publ., 2000. 262 p.
[4] Samsonov G.V., Priadko I.F., Priadko L.F. Elektronnaia lokalizatsiia v tverdom tele [Electron localization in a solid]. Moscow, Nauka publ., 1976. 339 p.
[5] Nosenko V.A. Kriterii intensivnosti vzaimodeistviia abrazivnogo i obrabatyvaemogo materialov pri shlifovanii [The criterion of intensity of the interaction of abrasive and processed materials in grinding]. Problemy mashinostroeniia i nadezhnosti mashin [Journal of Machinery Manufacture and Reliability]. 2001, no. 5, pp. 85–91.
[6] Nosenko V.A. K voprosu ob intensivnosti kontaktnogo vzaimodeistviia d-perekhodnykh metallov s karbidom kremniia pri shlifovanii [On the question of the intensity of the contact interaction of d-transition metals with silicon carbide in grinding]. Problemy mashinostroeniia i nadezhnosti mashin [Journal of Machinery Manufacture and Reliability]. 2002, no. 5, pp. 78–84.
[7] Nosenko V.A. Vliianie kontaktnogo vzaimodeistviia na iznos abrazivnogo instrumenta pri shlifovanii [The impact on the wear of contact interaction of abrasive tools for grinding]. Problemy mashinostroeniia i nadezhnosti mashin [Journal of Machinery Manufacture and Reliability]. 2005, no. 1, pp. 73–77.
[8] Geib K.M., Wilson C., Long R.G., Wilmsen C.W. Reaction between SiC and W, Mo, and Ta at elevated temperatures. Journal of Applied Physics, 1990, 68(6), pp. 2796–2800.
[9] Abdullaev O.R., Gabel’chenko A.I., Ivannikov P.V., Iakunin A.S. Issledovanie kubicheskogo nitrida bora metodami TsKL i TsKLVSR v rastrovom elektronnom mikroskope [Investigation of Cubic Boron Nitride Using the Colour Cathodoluminescence (CCL) and High Resolution Spectral Analysis in a Scanning Electron Microscope]. Naukoemkie tekhnologii [Science Intensive Technologies]. 2013, vol. 14, no. 11, pp. 084–088.
[10] Kondrashov V.A., Rozanov R.Iu., Nevolin V.K., Tsarik K.A. Issledovanie morfologii poverkhnosti karbida kremniia 6H-SIC posle vysokotemperaturnogo travleniia v vosstanovitel’noi srede [Investigation of the morphology of the surface of silicon carbide 6H-SIC after high etching in a reducing atmosphere]. Izvestiia vysshikh uchebnykh zavedenii. Elektronika [News of Higher Schools. Electronics]. 2014, no. 5(109), pp. 24–32.
[11] Nosenko V.A., Nosenko S.V., Avilov A.V., Bakhmat V.I. Morfologiia poverkhnosti korunda posle mikrotsarapaniia titanovogo splava [Morphology of a Surface of corundum after a microscratching of titanium alloy]. Mashinostroenie: setevoi elektronnyi nauchnyi zhurnal [Russian Internet Journal of Industrial Engineering]. 2014, no. 3, pp. 66–71. Available at: http://indust-engineering.ru/issues/2014/2014-3-11.pdf (accessed 15 April 2015).
[12] Nosenko V.A., Avilov A.V., Morozov A.V., Bakhmat V.I. Elektronno-mikroskopicheskie i mikrorentgenospektral’nye issledovaniia ploshchadki iznosa karbida kremniia posle mikrotsarapaniia kobal’ta [Electron-microscopic and microx-ray spectral researches of a site of wear of carbide of silicon after a cobalt microscratching]. Sovremennye problem nauki i obrazovaniia [Modern problems of science and education]. 2014, no. 6. Available at: www.science-education.ru/120-15418 (accessed 3 April 2015).
[13] Nosenko V.A., Avilov A.V., Afanas’eva K.V., Bakhmat V.I. Issledovanie poverkhnosti karbida kremniia posle vzaimodeistviia s kobal’tom pri mikrotsarapanii [The research of the surface of silicon carbide after the interaction with cobalt at microscratching]. Novyi universitet. Seriia: Tekhnicheskie nauki [New University. Technical Sciences]. 2014, no. 9(31), pp. 68–71. Available at: http://www.universityjournal.ru/docs/TN_9_14.pdf (accessed 10 April 2015).
[14] Nosenko V.A., Nosenko S.V., Avilov A.V., Bakhmat V.I. Mikrorentgenospektral’nye issledovaniia poverkhnosti korunda posle mikrotsarapaniia titana [Microprobe studies corundum surface after mikrotsarapaniya titanium]. Izvestiia Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta [News of Volgograd State Technical University]. 2014, vol. 12, no. 21(148), pp. 29–32.
[15] Nosenko V.A., Nosenko S.V., Avilov A.V., Bakhmat V.I. Struktura i khimicheskii sostav poverkhnosti karbida kremniia posle mikrotsarapaniia titana [Structure and chemical composition of a surface of carbide of silicon after a microscratching of titanium]. Mashinostroenie: setevoi elektronnyi nauchnyi zhurnal [Russian Internet Journal of Industrial Engineering]. 2014, no. 4, pp. 14–20. Available at: http://indust-engineering.ru/issues/2014/2014-4.pdf (accessed 3 April 2015).
[16] Nosenko V.A., Nosenko S.V., Avilov A.V., Bakhmat V.I. Rentgenospektral’nyi mikroanaliz poverkhnosti karbida kremniia posle mikrotsarapaniia titana [X-ray spectral microanalysis of the surface of carbide of silicon after the microscratching of titanium]. Vestnik Iuzhno-Ural’skogo gosudarstvennogo universiteta. Ser. Mashinostroenie [Bulletin of the South Ural State University. Ser. Mechanical engineering]. 2015, vol. 15, no. 1, pp. 69–79.
[17] Nosenko V.A., Avilov A.V., Kudriashova A.V., Amiralieva E.A. Morfologiia poverkhnosti karbida kremniia posle vzaimodeistviia s niobium [The morphology of surface of the crystal of silicon carbide after interaction with niobium]. Sovremennye problemy nauki i obrazovaniia [Modern problems of science and education]. 2014, no. 6. Available at: http://www.science-education.ru/120-16952 (accessed 5 April 2015).
[18] Mikheev R.S., Kobernik N.V., Kalashnikov I.E., Bolotova L.K., Kobeleva L.I. Tribotekhnicheskie svoistva antifriktsionnykh pokrytii na osnove kompozitsionnykh materialov [Tribotechnical properties of antifriction coatings based on composite materials]. Perspektivnye materially [Journal of Advanced Materials]. 2015, no. 3, pp. 48–54.
[19] Bogomolov N.I. O rabote treniia v abrazivnykh protsessakh [On the work of friction in abrasive processes]. Trudy VNIIASh [Proceedings VNIIASH]. 1965, № 1, pp. 72–79.
[20] Nosenko V.A., Nosenko S.V. Tekhnologiia shlifovaniia [Grinding Technology]. Volgograd, VPI (filial) VolgGTU, 2011. 424 p.
[21] Zaretskaia G.M., Lavrov I.V., Filonenko N.E. Iskusstvennye abrazivnye materialy pod mikroskopom. Fazovyi sostav i mikrostruktura [Artificial abrasive material under a microscope. The phase composition and microstructure]. Leningrad, Nedra publ., 1981. 160 p.
[22] Reed S.J.B. Electron microprobe analysis and scanning electron microscopy in geology. New York, Cambridge University Press, 2005. 216 p.