Hydraulic Resistance of Porous Metals
Authors: Pelevin F.V. | Published: 11.02.2016 |
Published in issue: #2(671)/2016 | |
Category: Technology and Process Machines | |
Keywords: porous mesh metal, hydraulic resistance, one- and two-dimensional intermesh coolant filtration, anisotropy |
The use of porous mesh metals in heat exchanger apparatus and the creation of intermesh flow of the coolant through porous mesh metal are promising and efficient ways of intensifying heat exchange and decreasing hydraulic losses. The author of the article presents experimental data on viscous and inertial resistance coefficients of various porous metals manufactured of chrome-nickel steel, nickel, copper, and invar wire cloth using the diffusion vacuum welding method with one- or two-dimensional one-phase coolant filtration. Experimental data was obtained from studying the hydraulic resistance of packets of wire cloth and porous mesh metals under the coolant intermesh and orthogonal filtration to the mesh plane. It has been established that the hydraulic resistance of the porous mesh metal is affected by porosity, mesh type and mesh number, direction of the coolant filtration in relation to the mesh plane, and surface machining of the porous mesh.
References
[1] Nauchnye osnovy tekhnologii 21 veka [Scientific bases of technology of the 21 century]. Ed. Leont’ev A.I., Piliugin N.N., Polezhaev Iu.V., Poliaev V.M. Moscow, Bauman Press, 2000. 136 p.
[2] Pelevin F.V., Ponomarev A.V. Effektivnost’ teploobmena v poristykh setchatykh metallakh pri dvumernom dvizhenii teplonositelia [Efficiency of Heat Exchange in Porous Mesh Materials at Two-Dimensional Motion of Coolant]. Teplovye protsessy v tekhnike [Thermal Processes in Engineering]. 2014, vol. 6, no. 1, pp. 41–48.
[3] Poristye pronitsaemye materially: spravochnik [Porous permeable materials: handbook]. Eds. Belov S.V. Moscow, Metallurgiia publ., 1987. 335 p.
[4] Sinel’nikov Iu.I., Tret’iakov A.F., Maturin N.I., Kolesnikov A.G., Panov A.D., Makarochkin V.I. Poristye setchatye materially [The porous mesh material]. Moscow, Metallurgiia publ., 1983. 64 p.
[5] Zeigarnik Yu.A., Ivanov F.P. Generalization of experimental data on internal heat transfer in porous structures. High Temperature, 2010, vol. 48, no. 3, pp. 382–387.
[6] Polyaev V.M., Gorbatovsky A.A. Thermal Conductivity of Porous Latticed Materials. Experimental Thermal and Fluid Science, 1992, no. 5, pp. 417–424.
[7] Leontiev A.I., Polyakov A.F. The thermal state of a porous wall under conditions of transpiration cooling. High Temperature, 2006, vol. 44, no. 1, pp. 99–107.
[8] Konstruktsionnye poristye materialy. V kn. Materialy i pokrytiia v ekstremal’nykh usloviiakh. V 3 t. T. 2. Peredovye tekhnologii proizvodstva [Structural porous materials. The book materials and coatings under extreme conditions. In 3 vol. Vol. 2. Advanced production technology]. Ed. Reznik S.V. Moscow, Bauman Press, 2002. 296 p.
[9] Zeigarnik Iu.A., Ivanov F.P. K otsenke teplogidravlicheskikh kharakteristik poristykh struktur [Estimation of thermal-hydraulic characteristics of porous structures]. Trudy 5 Rossiiskoi natsional’noi konferentsii po teploobmenu [Proceedings of the 5 Russian National Conference on Heat Transfer]. Moscow, MEI publ., 2010, vol. 5, pp. 172–175.
[10] Kirsanov Iu.A., Nazipov R.A., Bashkirtsev G.V. Teploobmen i soprotivlenie pri techenii odnofaznogo teplonositelia v vysokoporistoi vstavke [Heat transfer and resistance in the flow of coolant in the high single-pole insertion]. Trudy 5 Rossiiskoi natsional’noi konferentsii po teploobmenu [Proceedings of the 5 Russian National Conference on Heat Transfer]. Moscow, MEI publ., 2010, vol. 5, pp. 176–179.