Comparison of Combined and Separated-Combined Schemes of Ultrasonic Testing of Carbon Fiber Reinforced Plastic
Authors: Gemberg A.A., Prilutskiy M.A. | Published: 08.04.2016 |
Published in issue: #4(673)/2016 | |
Category: Technology and Process Machines | |
Keywords: polymeric composite material, ultrasonic testing, control scheme, artificial defect, damping factor, piezoelectric transducer |
Nowadays polymer composite materials (PCM) are increasingly used in various industries. The widespread introduction of PCM is associated with the need to ensure reliable and safe operation of PCM structures that requires the development and application of non-destructive testing methods. The analysis of the existing PCM testing methods has shown that the most promising of these is the ultrasonic testing method. It has the greatest sensitivity to the characteristic technological and operational defects in the composite. The results of studies on ultrasonic testing of PCM (CFRP) samples with artificial and technological defects of various sizes are presented in this paper. Test samples of a 4.0 mm thickness had inherent defects in the form of PTFE films with a diameter of 4, 8 and 12 mm. The films simulated technological defects that might occur in manufacturing due to deviations during forming or non-compliance with technological procedures. Experiments were carried out on 4.0 mm thick samples with artificial defects in the form of flat-bottomed reflectors that simulated delamination and improper bonding. Flat-bottomed artificial reflectors with a diameter of 3, 4, 5, 6, 8, 10 and 12 mm manufactured by counter boring at a 2.0 mm depth were meant to assess the sensitivity; while reflectors with a diameter of 8 mm at a depth of 3.5, 2.0 and 0.5 mm were used to assess the possibility of defect detecting in the near-surface zones. The advantages and disadvantages of combined and separated-combined testing methods were considered through theoretical and experimental studies.
References
[1] Zavidei V.I., Vasenev Iu.G., Stupachenko S.L. Kompleksnyi podkhod k vyiavleniiu defektov mnogosloinykh konstruktsii iz kompozitsionnykh materialov [An integrated approach to the identification of defects in laminated composite structures]. Available at: http://www.panatest.ru/static?al=COMPOSITE+MATERIALS (accessed 15 November 2015).
[2] Aleshin N.P., Grigor’ev M.V., Shchipakov N.A. Sovremennoe oborudovanie i tekhnologii nerazrushaiushchego kontrolia PKM [Modern equipment and technologies of nondestructive testing RMB]. Inzhenernyi vestnik [Engineering bulletin]. 2015, no. 1, pp. 533–538. Available at: http://engbul.bmstu.ru/doc/754392.html (accessed 10 October 2015).
[3] Grigor’ev M.V., Prilutskii M.A., Shchipakov N.A., Lavrenchenko M.A. Vliianie osnovnykh tipov defektov v monolitnykh obraztsakh iz PKM, vyiavliaemykh s ispol’zovaniem ul’trazvukovogo kontrolia, na prochnostnye kharakteristiki materiala [Impact of major types of defects in monolithic samples of pcm, identified using ultrasound control on strength characteristics of the material]. Svarka i Diagnostika [Welding and Diagnostics]. 2015, no. 6, pp. 11–14.
[4] Shen Q., Omar M., Dongri S. Ultrasonic NDE Techniques for Impact Damage Inspection on CFRP Laminates. Journal of Materials Science Research, 2012, no. 1(1), pp. 1–16. Available at: http://www.ccsenet.org/journal/index.php/jmsr/article/view/11648/9703 (accessed 10 November 2015).
[5] Wrobel G., Wierzbicki L., Pawlak S. A method for ultrasonic quality evaluation of glass/polyester composites. Archives of Materials Science and Engineering, 2007, vol. 28, iss. 12, pp. 729–734.
[6] Boitsov B.V., Vasil’ev S.L., Gromashev A.G., Iurgenson S.A. Metody nerazrushaiushchego kontrolia, primeniaemye dlia konstruktsii iz perspektivnykh kompozitsionnykh materialov [Nondestructive testing methods used for the design of polymer composite materials]. Trudy MAI [Trudy MAI]. 2011, no. 49. Available at: http://www.mai.ru/science/trudy/published.php? D=28061&PAGEN_2=2 (accessed 01 November 2015).
[7] Aleshin N.P. Fizicheskie metody nerazrushaiushchego kontrolia svarnykh soedinenii [Physical methods of nondestructive testing of welded joints]. Moscow, Mashinostroenie publ., 2013. 576 p.
[8] Mironov Iu.M., Khrapovitskaia Iu.V., Makeev M.O., Neliub V.A., Borodulin A.S., Chudnov I.V., Buianov I.A. Otsenka strukturnykh defektov uglerodnykh volokon i polimernykh kompozitsionnykh materialov na ikh osnove [Structural defect estimation of carbon fibers and polymer composites based on these fibers]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2011, no. 11, pp. 1–7. Available at: http://technomag.bmstu.ru/doc/281952.html (accessed 10 November 2015).
[9] Kulikov V.V., Petrova A.P. Analiz tipov defektov v kleevykh soedineniiakh aviatsionnoi tekhniki i ikh remont [Analysis of defect types in adhesive joints in aircraft and their repair]. Klei. Germetiki. Tekhnologii [Adhesives, sealants, and their properties]. 2011, no. 5, pp. 24–27.
[10] Kerber M.L., Vinogradov V.M., Golovkin G.S., Kryzhanovskii V.K. Polimernye kompozitsionnye materialy: struktura, svoistva, tekhnologiia [Polymeric composites: structure, properties, technology]. Sankt-Peterburg, Professiia publ., 2008. 560 p.
[11] Kogan D.I., Chursova L.V., Petrova A.P. Tekhnologiia izgotovleniia PKM sposobom propitki plenochnym sviazuiushchim [Technology for producing the polymer composites (PC) by impregnation with film binder]. Klei. Germetiki. Tekhnologii [Adhesives, sealants, and their properties]. 2011, no. 6, pp. 25–29.