Modeling of Burns When Grinding Hardened 30KhGSA Steel Parts
Authors: Soler Y.I., Nguyen Van Le, Kazimirov D.Y. | Published: 08.04.2016 |
Published in issue: #4(673)/2016 | |
Category: Technology and Process Machines | |
Keywords: modeling, grinding, burns, microhardness, digital technology, response surface |
The multiple dispersion analysis (MDA) models based on a D-optimal plan were developed for predicting the quantitative content of the burns and microhardness of the parts surfaces made of hardened steel 30KhGSA when grinding by abrasive Norton Quantum wheel 5NQ46I6VS3. It showed the best cutting capacity under fuzzy logic conditions with regards to position and dispersion measures for roughness and form accuracy. The models obtained are adequate in the factor space: longitudinal feed sl = 5–15 m/min, cross feed sc = 2–10 mm/double pass, cutting depth t = 0.005–0.02 mm, operational allowance z = 0.1–0.3 mm (cutting speed vw = 35 m/s). The method of quantitative evaluation of the burns with the application of digital technologies can be used to detect a significant effect of the longitudinal feed (A, A2) and cross feed (B, B2), allowance (D) and the first order the longitudinal feed (A, A2). It has been established that the sl and sc feeds are the most significant technological factors. In particular, 30KhGSA steel parts should be ground at sl ≥ 10–12 m/min. The increase in the operational allowance in rough grinding is conducive to the reduction of burns. To improve the removal allowance productivity, grinding should be done at the maximum cutting depth t = 0.015–0.02 mm, which is insignificant in regressions to burns in the factor space. The reduction of microhardness in the areas of the greatest burns indicates that the grinding burns are the result of the surface softening without re-hardening.
References
[1] Severnyi metallotsentr [North center]. Available at: http://www.smcspb.ru/home/7 (accessed 15 January 2016).
[2] El’ianov V.D., Kulikov V.N. Prizhogi pri shlifovanii [Burn when sanding]. Moscow, NIIMASh publ., 1974. 63 p.
[3] Lebedev V.G., Klimenko N.N., Al’-Adzheilat S.A. Mekhanizm obrazovaniia prizhogov pri shlifovanii detalei iz zakalennykh stalei [The mechanism of formation of burns in the grinding of hardened steels]. Naukovі notatki: mіzhvuz. zb. [Scientific notes: the interuniversity collection]. 2013, no. 40, pp. 141–143.
[4] Al’-Adzheilat S.A., Lebedev V.G. Formirovanie prizhogov otpuska pri shlifovanii napravliaiushchikh tiazhelykh pressov krugami iz KNB [The formation of burn marks leave when grinding rails heavy presses CBN]. Naukovo-virobnichii zhurnal [Scientificproduction journal]. 2007, no. 4, pp. 128–150.
[5] Ali Y.M., Zhang L.C. A fuzzy model for predicting burns in surface grinding of steel. International Journal of Machine Tools & Manufacture, 2004, vol. 44, pp. 563–571.
[6] Euzebio C.D.G., Aguiar P.R., Miranda H.I.C., Bianchi E.C. Monitoring of grinding burn by fuzzy logic. ABCM Symposium Series in Mechatronics, 2012, vol. 4, pp. 637–645.
[7] Aguiar P.R., Bianchi E.C., Canarim R.C. Monitoring of grinding burn by acoustic emission. Acoustic Emission, 2012, pp. 341–364.
[8] Smirnov V.A. Povyshenie effektivnosti ploskogo shlifovaniia periferiei kruga za schet ispol’zovaniia preryvistykh krugov s uprugodempfiruiushchimi elementami. Diss. kand. tekhn. nauk [Increasing efficiency of flat grinding the periphery of a circle through the use of intermittent circles with elastic damping elements. Cand. tehn. sci. diss.]. Izhevsk, Kalashnikov ISTU publ., 2008. 20 p.
[9] Averkov K.V., Rechenko D.S., Lasitsa A.M. Teplovye protsessy pri vysokoskorostnom shlifovanii [Thermal processes in high-speed grinding]. Omskii nauchnyi vestnik [Omsk scientific Bulletin]. 2011, no. 3(103), pp. 83–87.
[10] D’yakonov A.A., Shmidt I.V. Thermal physics mathematical modeling of cycle cylindrical grinding with radial feed. Proceeding of the world congress on engineering and computer science, 2015, vol. 2, pp. 800–803.
[11] Myers R.H., Montgomery D.C., Anderson-Cook C.M. Response surface methodology: process and product optimization using designed experiments. New Jersey, John Wiley & Sons, 2009. 824 p.
[12] Soler Ia.I., Kazimirov D.Iu., Nguen V.L. Kolichestvennaia otsenka prizhogov pri ploskom shlifovanii zakalennykh detalei iz stali 40Kh abrazivnymi krugami razlichnoi poristosti [Quantitative assessment of burns while flat grinding hardened parts made of steel 37Cr4 by abrasive wheels of different porosity]. Obrabotka metallov (tekhnologiia, oborudovanie, instrumenty) [Processing of metals (technology, equipment, tools)]. 2015, no. 1, pp. 6–19.
[13] Soler Ia.I., Lgalov V.V. Izuchenie mikrotverdosti formoobrazuiushchikh detalei shtampovoi osnastki pri abrazivnom shlifovanii [The study of microhardness forming parts of die tooling for abrasive grinding]. Vestnik IrGTU [Bulletin of Irkutsk state technical University]. 2012, no. 7, pp. 48–54.
[14] Strelkov A.B. Sozdanie informatsionnoi bazy dlia upravleniia protsessom ploskogo shlifovaniia periferiei kruga na osnove mnogokriterial’noi optimizatsii parametrov obrabotki. Diss. kand. tekhn. nauk [Create a database to manage the process of flat grinding the periphery of the circle on the basis of multi-criteria optimization of processing parameters. Cand. tehn. sci. diss.]. Irkutsk, INRTU publ., 2011. 190 p.