Geometry Analysis of Oblique Boring by Radius Peakless Cutters in Static and Kinematic Systems of Coordinates
Authors: Filippov A.V., Walter A.V., Shamarin N.N., Podgornykh O.A., Chazov P.A. | Published: 08.04.2016 |
Published in issue: #4(673)/2016 | |
Category: Technology and Process Machines | |
Keywords: boring, coordinate systems, peakless cutter, cutting edge geometry |
The geometry of the cutting edge has a significant effect on the mechanisms of deformation in the removed layer of the material, and on the mechanics of geometry formation, therefore the analysis of the cutting tool geometric parameters is important. Peakless cutting is characterized by high quality and efficiency. Geometrical parameters of oblique peakless boring are considered in this paper. The scheme of the process is drawn in a static system of coordinates. A method of calculating geometrical parameters in static and kinematic systems of coordinates is proposed. The geometry is determined by vector-matrix transformations based on the linear algebra apparatus using homogeneous coordinates. The limits of static angles of the cutting tools are set depending on the technological parameters such as the cutting depth, feed, workpiece diameter, cutting insert radius, and initial geometry of the cutting edge. The results obtained may be used for designing modern metal cutting tools and developing manufacturing processes.
References
[1] Denkena B., Biermann D. Cutting edge geometry. CIRP Annals — Manufacturing Technology, 2014, vol. 63, is. 2, pp. 631–653.
[2] Granovskii G.I. Kinematika rezaniia [Kinematics of cutting]. Moscow, Mashgiz publ., 1948. 200 p.
[3] Klimenko S.A., Manokhin A.S. Tverdoe «breiushchee» tochenie [Solid «shaving» turning]. Sverkhtverdye materially [Journal of Superhard Materials]. 2009, no. 1, pp. 58–74.
[4] Raphael G., Stone B.J. Boring with a Process Similar to Skiving. CIRP Annals — Manufacturing Technology, 1990, vol. 39, is. 1, pp. 425–428.
[5] Stone B.J., Bonikowski E.J., Chapple D.J., De Barr A.E. The Skiving of Ball-Bearing Tracks. CIRP Annals — Manufacturing Technology, 1980, vol. 29, is. 1, pp. 275–280.
[6] Nee A.Y.C., Venkatesh V.C. Form Accuracy of Tangentially Skived Workpieces. CIRP Annals — Manufacturing Technology, 1985, vol. 34, is. 1, pp. 121–124.
[7] Petrushin S.I., Filippov A.V. Analiz geometrii kosougol’nogo obtachivaniia bezvershinnymi reztsami [The analysis of the geometry of oblique turning peak less cutters]. Obrabotka metallov (tekhnologiia, oborudovanie, instrumenty) [Metal processing (technology, equipment, tools)]. 2013, no. 2, pp. 8–14.
[8] Filippov A.V. Cut-Layer Cross Section in Oblique Turning. Russian Engineering Research, 2014, vol. 34, no. 11, pp. 718–721.
[9] Filippov A.V. Cut-Layer Cross Section in Oblique Turning by a Single-Edge Tool with a Curved Front Surface. Russian Engineering Research, 2015, vol. 35, no. 5, pp. 381–384.
[10] Filippov A.V. Cut-Layer Cross Section in Oblique Turning by a Single-Edge Tool with a Curved Rear Surface. Russian Engineering Research, 2015, vol. 35, no. 5, pp. 385–388.
[11] Filippov A.V., Filippova E.O. Determination of cutting forces in oblique cutting. Applied Mechanics and Materials. Trans Tech Publications, Switzerland, 2015, vol. 756, pp. 659–664.
[12] Bobrov V.F., Ierusalimov D.E. Rezanie metallov samovrashchaiushchimisia reztsami [Metal cutting most rotary cutters]. Moscow, Mashinostroenie publ., 1972. 110 p.
[13] Bobrov V.F. Vliianie ugla naklona glavnoi rezhushchei kromki instrumenta na protsess rezaniia metallov [Effect of angle of the major cutting edge of the tool to the cutting process metal]. Moscow, Mashgiz publ., 1962. 152 p.
[14] Val’ter A.V., Klekovkina E.E. Preobrazovaniia sistem koordinat metallorezhushchikh instrumentov so smennymi mnogogrannymi plastinami [Transformation of coordinate systems of metal–cutting tools with replaceable polyhedral blades]. Nauchnoe obozrenie [Science education]. 2013, no. 5, pp. 57–61.
[15] Val’ter A.V. Programmnoe obespechenie avtomatizirovannogo analiza kinematiki protsessa rezaniia [The software of the automated analysis of the kinematics of the cutting process]. Obrabotka metallov (tekhnologiia, oborudovanie, instrumenty) [Metal processing (technology, equipment, tools)]. 2008, no. 1, pp. 18–19.
[16] Filippov A.V. Modelirovanie geometricheskikh parametrov kosougol’nogo tocheniia bezvershinnym reztsom s radiusnoi perednei poverkhnost’iu [Modeling of geometrical parameters peakless oblique turning radius cutter with the front surface]. Sbornik nauchnykh trudov 7 Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii [Collection of scientific works of the 7 International Scientific and Technical Conference]. Tomsk, TPU publ., 2013, pp. 361–364.
[17] Foks A., Pratt M. Vychislitel’naia geometriia. Primenenie v proektirovanii i na proizvodstve [Computational geometry. The use in the design and manufacturing]. Moscow, Mir publ., 1982. 304 p.
[18] Efimov K.V. Kratkii kurs analiticheskoi geometrii [Short-course of analytical geometry]. Moscow, Nauka publ., 1969. 273 p.