Technological Reserves of Improving Grinding Quality of High Speed Steel Plates with Improved Productivity
Authors: Soler Y.I., Van Canh Nguyen | Published: 11.05.2016 |
Published in issue: #5(674)/2016 | |
Category: Technology and Process Machines | |
Keywords: grinding, sparking-out, measure of position, mean, median, measure of dispersion, process stability, sintercorundum wheels, chromous |
This study identifies methods of improving the quality of R9M4K8 and R12F3K10M3 high-speed steel plates, the use of which in tool manufacturing is restricted by their low grindability. The roughness parameters Ra and Rmax (GOST 2789–73) and flatness deviation parameters (GOST 24642–81), namely the basic parameter EFEmax and the supplementary parameters EFEa и EFEq, called the arithmetic and quadratic indexes respectively, are accepted as the output grinding parameters. The Norton 5SG46K12VXP high-porous wheel (HPW) is chosen as an abrasive tool. Its sintercorundum grains have an improved cutting capacity compared to traditional electrocorundum, namely 34AF60K6V5 alloyed chrome. The capabilities of high-porous sintercorundum wheels are shown at the spark-out stage using the non-parametric statistics method, which has advantages compared to parametric evaluations when the conditions of homoscedastic and normalcy distribution are violated. Univariate distributions of frequencies by medians have shown that sparking-out of the high-speed plate provides the most significant decrease of median flatness deviation (up to 1.25–1.3 times), with the spark-out pass j = 6 for the R9М4К8 plate, and j = 8 for the R12F3К10М3 plate. For the R12F3К10М3 plate, the parameter Rmax is decreased by one categorical magnitude (CM) according to GOST 2789–73, and the parameter Ra is decreased within the CM range. For the R9М4К8 plate, the heights Ra and Rmax are characterized by the values 0.05 and 0.32 mcm respectively, and lie in the range of CM. The specified number of spark-out passes is also taken into consideration when the accuracy of the process is assessed.
References
[1] Pilinskii A.V. Innovatsionnye metody i vyzovy v skorostnom i ul’traskorostnom shlifovanii [Innovative methods and challenges in high speed and ultra-high-speed grinding]. Vektor nauki TGU [Vector of science TSU]. 2015, no. 2 (32-2), pp. 136–144.
[2] Zubarev Iu.M. Sovremennoe sostoianie i perspektivy razvitiia instrumental’nogo proizvodstva [Current state and prospects of development of tool production]. Spravochnik. Inzhenernyi zhurnal s prilozheniem [Handbook. An Engineering journal with appendix]. 2013, no. 3, pp. 29–34.
[3] Sakharov G.N., Arbuzov O.B., Borovoi Iu.L., Grechishnikov V.A., Kiselev A.S. Metallorezhushchie instrumenty [Metal cutting tools]. Moscow, Mashinostroenie publ., 1989. 328 p.
[4] Geller Iu.A. Instrumental’nye stali [Tool steels]. Moscow, Metallurgiia publ., 1983. 527 p.
[5] Gusseinor G.A., Bagirov S.A. Main feature of the mechanism of formation the surface grinding with periphery of straight disk. International journal of Advances in Engineering &Technology, 2014, vol.7 (1), pp. 66–74.
[6] Kundrak J., Bana V. Size, form and position accuracy in machining of case hardened steels. Proc. on the DMC 2002, Conference, Kosice, Slovakia, 22-23rd May 2002, pp. 41–46.
[7] GOST 24643–81. Dopuski formy i raspolozheniia poverkhnostei. Chislovye znacheniia [State Standard 24643-81. Tolerances of form and position of surfaces. Numeric values]. Moscow, Standartinform publ., 1981. 14 p.
[8] GOST 2789–73. Sherokhovatost’ poverkhnosti. Parametry, kharakteristiki i oboznacheniia [State Standard 2789-73. The roughness of the surface. Options, features, and symbols]. Moscow, Standartinform publ., 1985. 10 p.
[9] Sachsel H.G. Precision Abrasive Grinding in the 21st Century: Conventional, Ceramic, Semi Superabrasive and Superabrasive. USA, Xlibris Corp., 2010. 680 p.
[10] Webster J., Tricard M. Innovation in Abrasive Products for Precision Grinding. CIRP Annals–Manufacturing Technology, 2004, vol. 53 (2), pp. 597–617.
[11] Armer A.I. Povyshenie effektivnosti ploskogo maiatnikovogo shlifovaniia putem uskorennogo vykhazhivaniia s primeneniem ustroistv dlia mikropodachi zagotovok. Diss. kand. tekh. nauk [Increasing efficiency of flat grinding by pendulum accelerated nursing with application of the device for incremental feed of the blanks. Cand. tech. sci. diss.]. Ul’ianovsk, 2012. 208 p.
[12] Kremen’ Z.I., Iur’ev V.G., Baboshkin A.F. Tekhnologiia shlifovaniia v mashinostroenii [Grinding tech in mechanical engineering]. Sankt-Peterburg, Politekhnika, 2007. 424 p.
[13] Lur’e G.B. Shlifovanie metallov [Grinding of metals]. Moscow, Mashinostroenie publ., 1969. 172 p.
[14] Urbaniak M. Effect of the conditionins of CBN wheels on the technological results of HS6-5-2 steel grinding. Archives of civil and mechanical engineering, 2006, vol. 6, no. 2, pp. 31–39.
[15] Feldshtein E., Dyachkova D. Surface texture of sintered iron-graphite MMCs infiltrated by copper alloys after grinding. Advances in manufacturing science and technology, 2013, vol. 37 (2), pp. 69–76.
[16] Molchanov S.A., Mogilenskii V.I., Kaplan F.S. Novyi abrazivnyi instrument na osnove spechennogo oksida aliuminiia [New abrasive tools on the basis of sintered aluminum oxide]. Stanki i instrument [Russian Engineering Research]. 1991, no. 3, pp. 39–40.
[17] Bonner A., Bright E., Lambert E.L., Matsumoto D.S., Orlhac X., Sheldon D.A. Abrasive Articles with Novel Structures and Methods of Grinding. Pat. 7275980 US, Saint-Gobain Abrasive Technology Company, 2003.
[18] Wu M. Method for Making High Permeability Grinding Wheels. Pat. 5738696 US, Norton Company, 1998.
[19] Lindsay R.P. The performance of seeded gel abrasive in the laboratory and at customer test, sites. Aircraft Engineering and Aerospace Technology, 1989, vol. 61 (10), pp. 20–26.
[20] Soler Ia.I., Lgalov V.V., Strelkov A.B. Otsenka rezhushchikh svoistv abrazivnykh krugov razlichnoi poristosti po kriteriiu formy ploskikh detalei shtampov Kh12 [Evaluation of various porosity abrasive cutting properties by the criterion of form accuracy of the plane parts of steel X12]. Metalloobrabotka [Metalworking]. 2012, no. 1 (67), pp. 5–10.
[21] Soler Ia.I., Nguen V.K. Prognozirovanie effektivnosti shlifovaniia krugami razlichnoi poristosti iz traditsionnykh i novykh abrazivov po kriteriiu tochnosti formy plastin R9M4K8 [Predicting Grinding Efficiency of Different Porosity Wheels from Traditional and New Abrasives by the Criterion of Р9M4K8 Plate Shape Accuracy]. Vestnik IrGTU [Vestnik of Irkutsk State Technical University State Technical University]. 2014, no. 11 (94), pp. 49–58.
[22] Kliachkin V.N. Statisticheskie metody v upravlenii kachestvom: komp’iuternye tekhnologii [Statistical methods in quality management: computer technology]. Moscow, Finance and Statistics, INFRA-M, 2009. 304 p.
[23] Hollander M., Wolfe D.A. Nonparametric statistical methods. New York, Willy-Interscience, 1999. 787 p.
[24] GOST R ISO 5726–2002. Tochnost’ (pravil’nost’ i pretsizionnost’) metodov i rezul’tatov izmereniia. Ch. 1. Osnovnye poniatiia i opredeleniia [ISO 5726–2002. Accuracy (correctness and precision) of methods and measurement results. Part 1. Basic concepts and definitions]. Moscow, Standartinform publ., 2002. 24 p.
[25] Dobroskok V.L. Povyshenie stabil’nosti protsessa shlifovaniia putem upravleniia rel’efom rabochei poverkhnosti almaznykh krugov. Diss. kand. tekh. nauk [Improving the stability of the grinding process by controlling the elevation of the working surface of diamond wheels. Cand. tech. sci. diss.]. Khar’kov, 1986. 253 p.
[26] Soler Ya. I., Nguyen Van Canh. The influence of sparking-out on formation stability of micro- and macro geometry high-speed plates in pendulum grinding by sinterkorund. Austrian Journal of Technical and Natural Sciences, 2015, vol. 1-2, pp. 58–63.
[27] Soler Ya.I., Nguyen V.C. Makrogeometricheskaia tochnost’ instrumental’nykh stalei pri ploskom maiatnikovom shlifovanii krugom iz khromistogo elektrokorunda [Macro geometric precision tool steel with flat pendulum grinding circle of chromium corundum]. Novye zadachi tekhnicheskikh nauk i puti ikh resheniia: sb. st. mezhdunar. nauchno-prakt. konf. [New tasks of engineering science and ways of their solution: a collection of articles of the international scientific-practical conference]. Ufa, Aeterna publ., 2014, pp. 65–72.
[28] Koval’chuk Iu.M., Bukin V.A., Glagovskii B.A., Lysanov V.S., Ovchinnikov A.A., Efros M.G., Ravikovich V.V., Tankhel’son B.M. Osnovy proektirovaniia i tekhnologiia izgotovleniia abrazivnogo i almaznogo instrumenta [Fundamentals of design and technology of manufacturing of abrasive and diamond tools]. Moscow, Mashinostroenie publ., 1984. 284 p.
[29] Soler Ya.I., Nguyen V.C. Prognozirovanie mikrorel’efa stal’nykh instrumentov pri shlifovanii krugami iz khromistogo elektrokorunda [Prediction microrelief steel tools for grinding wheels made of chrome corundum]. Nauchnoe obozrenie [Scientific Review]. 2014, no. 11, pp. 123–130.