Hardware and Software Provisions for Studying the Condition of Lathes by Parameters of the Support Unit Movement Paths
Authors: Yagopolskiy A.G., Kropotin N.J. | Published: 11.05.2016 |
Published in issue: #5(674)/2016 | |
Category: Technology and Process Machines | |
Keywords: lathe, experimental research, forecasting, support unit, path parameters of movements, hardware and software |
Design and development of optical-electronic hardware and software for studying lathe condition by parameters of the support unit movement paths is a topical task. It is shown that the most important area in developing the software-based testing method is the creation of methodological and information support for the diagnostics and forecasting of lathe reliability by parameters of the support unit movement paths. Experimental studies have shown that lathe diagnostics by the parameters of the support unit movement paths can be performed with the help of an optical-electronic mechatronic set of diagnostic tests. The proposed tests can be used for automated processing and analysis of the data on the support unit movement paths in an interactive mode. The hardware can be easily adapted to the design features of a particular lathe that is being diagnosed.
References
[1] Vasil’ev G.N., Iagopol’skii A.G. Obespechenie tekhnologicheskoi nadezhnosti tokarnykh stankov monitoringom parametrov traektorii peremeshcheniia supportnykh uzlov [Provision of Technological Reliability of Turning Lathes by Monitoring of Parameters of Trajectories of Support-Group Movements]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering]. 2010, no. 2, pp. 91–105.
[2] Komshin A.S., Obukhov I.V., Siritzky A.B. O vozmozhnosti otsenki postoiannoi sostavliaiushchei sistematicheskoi pogreshnosti sredstv izmerenii posredstvom obrabotki rezul’tatov izmerenii [About possibility of systematic error estimation of measurement devices by measurement results processing]. Pribory [Instruments]. 2016, no. 2, pp. 24–29.
[3] Vasil’ev G.N., Iagopol’skii A.G., Tremasov A.P. Problemy diagnostiki i obespecheniia nadezhnosti metallorezhushchikh stankov [Problems of diagnostics and reliability of machine tools]. STIN [Russian Engineering Research]. 2003, no. 7, pp. 14–17.
[4] Iagopol’skii A.G., Krikunov D.E. Analiz korrektsii teplovykh deformatsii v stankakh [Analysis of Correction of Thermal Deformation in Machine Tools]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering], 2014, no. 5 (98), pp. 98–105.
[5] Komshin A.S., Syritskii A.B. Izmeritel’no-vychislitel’nye tekhnologii ekspluatatsii metallorezhushchego oborudovaniia i instrumenta [Measuring and computing technology operating metal-cutting equipment and tools]. Mir izmerenii [Measurement World]. 2014, no. 12, pp. 3–9.
[6] Nikitin O. F Gidravlika i gidropnevmoprivod [Hydraulics and Hydro-pneumatic]. Moscow, Bauman Press, 2012. 430 p.
[7] Morgunov K. P. Gidravlika, gidravlicheskie mashiny, gidroprivod [Hydraulics and hydraulic machines, hydraulic]. Sankt-Peterburg, St. Petersburg SUWC publ., 2009. 545 p.
[8] Law M., Wabner M., Colditz A., Kolouch M., Noack S., Ihlenfeldt S. Active vibration isolation of machine tools using an electro-hydraulic actuator. CIRP Journal of Manufacturing Science and Technology, 2015, vol. 10, pp. 36–48.
[9] Nikulin Iu.V., Iagopol’skii A.G. Mesto izmeritel’nykh preobrazovatelei promyshlennogo tipa v diagnosticheskoi apparature kontrolia dinamicheskikh protsessov stanka [Position transducers in industrial-type diagnostic equipment monitoring dynamic processes of the machine]. Inzhenerno-fizicheskie problemy novoi tekhniki: tez. dokl. 6-go Vserossiiskogo soveshchaniia-seminara [Engineering and physical challenges of new technology: abstracts of the 6th National Conference-Workshop]. Moscow, Bauman Press, 2001, pp. 168–169.
[10] Iagopol’skii A.G., Tkachenko Ia.V. Ispol’zovanie avtomatizirovannykh ispytanii dlia povysheniia tekhnologicheskogo urovnia stankov [Use of automated testing to improve the technological level of the machines]. Sostoianie i problemy izmerenii: tez. dokl. 8-i Vserossiiskoi nauchn.-tekhn. konf. [Status and measurement problems: abstracts of the 8th All-Russian Scientific and Technical Conference]. Moscow, Bauman Press, 2002, pp. 82–83.
[11] Iagopol’skii A.G., Zykov A.V. Avtomatizatsiia sistemy obrabotki dannykh (SOD) datchikov stanka dlia diagnostiki dvizheniia formoobrazuiushchikh uzlov [Automation of the data processing system (SOD) for the diagnosis of machine motion detectors formative components]. Sostoianie i problemy izmerenii: tez. dokl. 8-i Vserossiiskoi nauchn.-tekhn. konf. [Status and measurement problems: abstracts of the 8th All-Russian Scientific and Technical Conference]. Moscow, Bauman Press, 2002, pp. 84–85.
[12] Iagopol’skii A.G., Tremasov A.P. Sovremennye metody diagnostiki i kontrolia dlia obespecheniia tekhnologicheskoi nadezhnosti stankov [Modern methods of diagnosis and control to ensure the technological reliability of machines]. Sostoianie i problemy izmerenii: tez. dokl. 8-i Vserossiiskoi nauchn.-tekhn. konf. [Status and measurement problems: abstracts of the 8th All-Russian Scientific and Technical Conference]. Moscow, Bauman Press, 2002, pp. 86–87.
[13] Weck M. Werkzeugmaschienen. Band. 5. Messtechnische Untersuchungen und Beurteilungen [Machine tools. vol. 5. Metrological examinations and assessments]. Berlin, Heinderberg, Springer-Verlag, 2001. 160 p.
[14] Weck M., Jahn D., Hoymann H., Lescher M. Mobile service applications for machine tools. Virtual and Augmented reality applications in manufacturing. Berlin, Springer, 2004, pp. 97–103.
[15] Weck M., Jahn D., Kurth A., Peters A. Components based control software for distributed manufacturing. In Proceedings of 2000 JUSFA, Berlin, Springer, 2000, pp. 86–97.