Transfer of Metal on the Silicon Carbide Surface when Micro-Cutting Titanium and Zirconium
Authors: Nosenko V.A., Avilov A.V., Nosenko V.A., Bakhmat V.I., Bykov Y.M. | Published: 30.06.2016 |
Published in issue: #7(676)/2016 | |
Category: Technology and Process Machines | |
Keywords: micro-cutting, titanium, zirconium, silicon carbide, surface morphology, metal transfer |
The main reason for poor grindability of titanium and zirconium alloys is the high adhesive activity of the metals that form the basis of the alloys. Contact interaction of titanium and zirconium with silicon carbide is studied when modeling the process of micro-cutting by specially prepared crystals. The condition of the surface and the surface boundary layer of the silicon carbide and the adhered metal is investigated using Versa 3D, a scanning electron microscope with magnification from 1,000 to 100,000 times. The concentration of metal on the crystal surface is determined by local micro X-ray analysis. Specific aspects of carbide silicon wear at different speeds and depths of micro-cutting are considered. It is shown that when titanium and zirconium are micro cut by a silicon carbide crystal, intense metal adhesion to the top of the crystal occurs. The average metal concentrations on the surface of the silicon carbide wear pad at the micro-cutting speed of 35 m/sec differ insignificantly. With the increase of the speed to 60 m/sec, the transfer of titanium and zirconium to silicon carbide increases, and the transfer of titanium increases to a greater degree. It has been established that chipping of micro volumes of the crystal is the main type of silicon carbide wear when micro-cutting titanium and zirconium.
References
[1] Nikolaev A.I., Larichkin F.D., Gerasimova L.G., Glushchenko Iu.G., Novosel’tseva V.D., Maslova M.V., Nikolaeva O.A. Titan i ego soedineniia: resursy, tekhnologii, rynki, perspektivy [Titanium and its compounds: resources, technologies, markets and prospects]. Apatity, RAN, Kol’skii nauchnyi tsentr, IKhTREMS KNTs RAN, Luzin Institute for Economic Studies, 2011. 152 p.
[2] Vernadskii V.I. Analiticheskaia khimiia tsirkoniia i gafniia [Analytical chemistry of zirconium and hafnium]. Moscow, Nauka publ., 1965. 241 p.
[3] Nosenko V.A., Nosenko S.V. Tekhnologiia shlifovaniia [Grinding technology]. Volgograd, IUNL VolgGTU publ., 2011. 425 p.
[4] Makarov V.F. Sovremennye metody vysokoeffektivnoi abrazivnoi obrabotki zharoprochnykh stalei i splavov [Modern methods of high-efficiency abrasive machining of heat-resistant steels and alloys]. Sankt-Petersburg, Lan’ publ., 2013. 329 p.
[5] Nosenko V.A., Larionov N.F., Egorov N.I., Volkov M.P. Vybor kharakteristiki abrazivnogo instrumenta i SOZh dlia glubinnogo shlifovaniia [The selection characteristics of the abrasive tool and the coolant for deep grinding]. Vestnik mashinostroeniia [Russian Engineering Research]. 1989, no. 5, pp. 17–21.
[6] Salov P.M., Salov D.P. Ratsional’noe ispol’zovanie rabochei poverkhnosti abrazivnykh krugov [Rational use of the working surface of the abrasive wheels]. Cheboksary, Cheboksarskii politekhnicheskii in-t (filial) MGOU publ., 2010. 332 p.
[7] Saiutin G.I., Nosenko V.A. Shlifovanie detalei iz splavov na osnove titana [Grinding parts of alloys based on titanium]. Moscow, Mashinostroenie publ., 1987. 80 p.
[8] Saiutin G.I., Nosenko V.A., Bogomolov N.I. Vybor instrumenta i SOZh pri shlifovanii titanovykh splavov [The choice of tool and cutting fluid for grinding titanium alloys]. STIN [Russian Engineering Research]. 1981, no. 11, pp. 15–17.
[9] Kremen’ Z.I., Popovskii D.A., Iur’ev V.G. Shlifovanie titanovykh splavov shlifoval’nymi krugami na osnove el’bora i almaza [Glazing titanium alloys by diamond-dressed and borazon-dressed wheels]. Vestnik mashinostroeniia [Russian Engineering Research]. 2013, no. 5, pp. 66–69.
[10] Gorelov V.A., Zhuplov M.V., Fadin D.M., Iakovlev M.G. Issledovanie sil rezaniia v protsesse shlifovaniia titanovogo splava VT3-1 [Analysis of cutting forces in the course grinding of the titanium alloy]. Vestnik MGTU Stankin [Vestnik MSTU Stankin]. 2012, vol. 1, no. 1, pp. 73–77.
[11] Nikitin K.N., Shlepov I.A., Bliukher G.M., Klimov A.A. Vliianie razlichnykh sposobov mekhanicheskoi obrabotki na korrozionnoe povedenie tsirkonievykh izdelii [Effect of different methods of mechanical treatment on the corrosion behaviour of zirconium products]. Voprosy atomnoi nauki i tekhniki. Seriia Materialovedenie i novye materialy [Problems of atomic science and technology. Series: Materials science and new materials]. 2012, no. 1 (72), pp. 54–59.
[12] Nosenko V.A. Vzaimodeistvie titana, tsirkoniia i gafniia s karbidom kremniia pri shlifovanii krugami s napolniteliami [The interaction of titanium, zirconium and hafnium with silicon carbide for grinding wheels with fillers]. STIN [Russian Engineering Research]. 1997, no. 4, pp. 34–36.
[13] Nosenko V.A. Unidirectional and opposing deep grinding of titanium alloy with periodic wheel adjustment. Russian Engineering Research, 2010, vol. 30, no. 10, pp. 1016–1021.
[14] Nosenko S.V., Nosenko V.A., Kremenetskii L.L. Vliianie pravki abrazivnogo instrumenta na sostoianie rel’efa obrabotannoi poverkhnosti titanovogo splava pri vstrechnom glubinnom shlifovanii [Influence of abrasive tool dressing on state of relief of machined surface of titanium alloy at counter deep grinding]. Vestnik mashinostroeniia [Russian Engineering Research]. 2014, no. 7, pp. 64–68.
[15] Khudobin L.V., Unianin A.N. Minimizatsiia zasalivaniia shlifoval’nykh krugov [Minimizing the clogging of grinding wheels]. Ul’ianovsk, Ul’ianovskii gosudarstvennyi tekhnicheskii universitet publ., 2007. 299 p.
[16] Nosenko V.A., Nosenko S.V. Deep grinding of titanium alloy with continuous wheel correction. Russian Engineering Research, 2010, vol. 30, no. 11, pp. 1124–1128.
[17] Nosenko V.A., Nosenko S.V., Avilov A.V., Bakhmat V.I. Morfologiia poverkhnosti korunda posle mikrotsarapaniia titanovogo splava [Morphology of a surface of corundum after a microscratching of titanium alloy]. Mashinostroenie: setevoi elektronnyi nauchnyi zhurnal [Russian Internet Journal of Industrial Engineering]. 2014, vol. 2, no. 3, pp. 66–71.
[18] Nosenko V.A., Nosenko S.V., Avilov A.V., Bakhmat V.I. Mikrorentgenospektral’nye issledovaniia poverkhnosti korunda posle mikrotsarapaniia titana [Microengineering study the surface of corundum after macrocarpaea titanium]. Izvestiia VolgGTU. Seriia Progressivnye tekhnologii v mashinostroenii [Izvestia VSTU. Ser. Progressive technologies in mechanical engineering]. 2014, is. 12, no. 21 (148), pp. 29–32.
[19] Samsonov G.V., Priadko I.F., Priadko L.F. Elektronnaia lokalizatsiia v tverdom tele [Electron localization in a solid]. Moscow, Nauka publ., 1976. 339 p.