Improving the Efficiency of Thermosiphon Radiators by Structuring the Outer Surface of the Heating Tube
Authors: Zubkov N.N., Barskov K.V. | Published: 10.08.2016 |
Published in issue: #8(677)/2016 | |
Category: Technology and Process Machines | |
Keywords: thermosiphon radiator, heating system, nucleate boiling, heat transfer intensification, deformational cutting, micro-structured surface |
The main advantages of thermosiphon radiators over classic analogues are low metal consumption, an isothermal surface, a significant reduction of the heating water volume in the radiator, high corrosion resistance and aesthetics. At the same time there are also disadvantages such as insufficient heat transfer during the phase transition of the heat transfer liquid, and a characteristic humming noise at the nucleate boiling stage that significantly narrows the area of application of thermosiphon radiators in residential buildings. The authors propose a method of deformational cutting to obtain a complex heat exchange microstructure on the outer surface of the heating tube. The microrelief obtained by deformational cutting has a capillary effect, thus supporting intensification of the phase transition due to the significant enlargement of the heat exchange surface area. The phase transition in microrelief does not generate bubbles and therefore eliminates the noise when the radiator is in operation. High processibillity of the deformational cutting method has a minimal effect on the cost of the radiator. Isopropyl alcohol evaporation process is studied for various micro-structured surfaces obtained by deformational cutting. Compared to a smooth surface, the tested microrelief surfaces have shown a two-fold increase in heat exchange capacity, without the noise typical of nucleate boiling.
References
[1] Petrenko S.V. Fokin V.M. Nagrevatel’nyi pribor dlia povysheniia energoeffektivnosti sistem otopleniia pomeshchenii [A heating device for energy efficiency space heating systems]. Vestnik energoeffektivnosti [Energy Bulletin]. 2015, no. 2, pp. 88–92.
[2] Bogoslovskii V.N., Skanavi A.N. Otoplenie [Heating]. Moscow, Stroiizdat publ., 1991. 735 p.
[3] Tayali N., Shiret A. Thermosyphon radiators. Patent US, no. 20020134427 A1, 2002.
[4] Poliakova E. Podbor i ustanovka membrannykh bakov dlia sistem otopleniia i GVS [Selection and installation of membrane tanks for heating and hot water]. Akva-Term [Aqua-Therm]. 2010, no. 6(58), pp. 54–57.
[5] Opredelenie naibolee effektivnykh rezhimov raboty 6-i sektsionnogo stal’nogo radiatora s «litievo-bromidnoi zhidkost’iu» s uslovnym nazvaniem «Vakuumnyi Litievo-Bromidnyi Superprovodiashchii Radiator» [Determine the most effective modes of 6 and section steel radiator with «lithium bromide liquid» with the provisional name «Vacuum Lithium bromide Super-Radiator»]. Available at: http://is34.ru/files/radiator_1.pdf (accessed 07 April 2016).
[6] Scurrah Norman Hugh. Heat transfer panels. Patent GB, no. 2099980 A, 1982.
[7] Zubkov N.N., Ovchinnikov A.I., Kononov O.V. Izgotovlenie teploobmennykh poverkhnostei novogo klassa deformiruiushchim rezaniem [Production of heat transfer surfaces of a new class deforming cutting]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering]. 1993, no. 4, p. 79.
[8] Zubkov N.N., Polyakov A.F., Shekhter Yu.L. The hydraulic characteristics of porous materials for a system of transpiration cooling. High Temperature, 2010, vol. 48, no. 2, pp. 231–237.
[9] Zubkov N.N. Poluchenie podpoverkhnostnykh polostei deformiruiushchim rezaniem dlia intensifikatsii puzyr’kovogo kipeniia [Obtaining of subsurface cavities by deforming cutting for enhancement of bubble boiling]. Vestnik mashinostroeniia [Russian Engineering Research]. 2014, no. 11, pp. 75–79.
[10] Zubkov N.N., Trofimovich A.S., Ovchinnikov A.I., Tsfasman G.Iu., Gorodnikov V.V. Poluchenie shtyr’kovykh struktur dlia kipeniia azota [Making of pin fin structures for boiling of nitrogen]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering]. 2013, no. 1(90), pp. 100–109.
[11] Thors P., Zoubkov N. Method and tool for making enhanced heat transfer surfaces. European Patent no. 1692447, 2009.
[12] Zubkov N.N., Sleptsov A.D. Production of Slotted Polymer Filter Tubes by Deformational Cutting. Russian engineering research, 2010, vol. 30, no. 12, pp. 1231–1233.
[13] Gortyshov Iu.F., Popov I.A., Zubkov N.N. Kas’kov S.I., Shchelchkov A.V. Kipenie vody na mikrostrukturirovannykh poverkhnostiakh [Boiling water microstructured surface]. Trudy Akademenergo [Transactions of Academenergo]. 2012, no. 1, pp. 14–31.
[14] Popov I.A., Shchelchkov A.V., Zubkov N.N., Lei R.A., Gortyshov Y.F. Boiling heat transfer of different liquids on microstructured surfaces. Russian Aeronautics, 2014, vol. 57, no. 4, pp. 395–401.
[15] Morskoi D.N. Protsessy kipeniia na poverkhnostiakh, poluchennykh metodom deformatsionnogo rezaniia [The process of boiling on the surfaces obtained by the method of strain cutting]. Budushchee mashinostroeniia Rossii: sb. tr. Vseros. konf. molodykh uchenykh i spetsialistov, Moskva, 22-25 sentiabria 2010 [Future engineering of Russia: proceedings of all-Russian conference of young scientists and specialists, Moscow, 22-25 September 2010]. Moscow, Bauman Press, 2010, pp. 163–164.
[16] Poniewski M.E., Thome J.R. Nucleate Boiling on Micro-Structured Surfaces. USA, Heat Transfer Research Inc., 2008. 366 p.
[17] McHale J.P., Garimella S.V. Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces. International Journal of Multiphase Flow, 2010, vol. 36, pp. 249–260.
[18] Sarbu I., Valea E.S. Correlations for enhanced boiling heat transfer on modified surfaces tubes. International journal of energy and environment, 2011, vol. 5, no. 3, pp. 444–451.
[19] Popov I.A., Makhianov Kh.M., Gureev V.M. Fizicheskie osnovy i promyshlennoe primenenie intensifikatsii teploobmena: Intensifikatsiia teploobmena [Physical basics and industrial applications of heat transfer intensification: heat transfer]. Kazan, Tsentr innovatsionnykh tekhnologii publ., 2009. 560 p.