The Determination of Rational Application of Axial, Centripetal and Centrifugal Ultralow Power Turbines by their Generalized Characteristics
Authors: Kalabukhov D.S. | Published: 07.09.2016 |
Published in issue: #9(678)/2016 | |
Category: Technology and Process Machines | |
Keywords: ultralow power turbine, operating parameters, generalized characteristic, coefficient of circumferential efficiency, coefficient of power efficiency, axial turbine, centripetal turbine, centrifugal turbine |
Improving the efficiency of ultralow power turbines that are used as energy sources in main and auxiliary units in transport and industrial systems is an important task. The common way to improve efficiency is to optimize operating and geometrical parameters of the turbines. However, due to a large variety of circuit solutions, designers face a problem of choosing a rational variant of the turbine with specific combinations of input data and calculated parameters. This problem has not been sufficiently studied in the literature, hence the proposed comparative analysis of efficiency of the most common types of turbines, namely single-stage axial turbines, and centripetal and centrifugal radial turbines. The comparison is based on the statistical analysis of the collected experimental findings that take into account the latest data about power efficiency of ultralow power turbines. Using the proposed analysis, it was possible to plot generalized characteristics of the turbines as dependencies of power efficiency on the loading parameter of the turbine. The generalized characteristics allow for a possible range of values of the coefficient of efficiency, due to the influence of the geometrical and operational parameters on the efficiency of the working process. The calculations and experiments have justified the use of any type of turbine in the operation modes with regards to the loading parameter Yт. The prospects of further improvement of the efficiency of these turbines, especially the axial ones, are noted. The advantages of two-stage circuits over single-stage circuits are shown. It has been concluded that it is feasible to further research and apply two-stage axial, centrifugal, and axial-centrifugal ultralow power turbines as part of a turbine assembly.
References
[1] Grigor’ev V.A., Rad’ko V.M., Kalabukhov D.S. Analiz sostoianiia problemy povysheniia effektivnosti turboprivodov sverkhmaloi moshchnosti i puti ee resheniia [The analysis of the problem of increase of efficiency turbo drive of midget power condition and the way of its decision]. Aviatsionno-kosmicheskaia tekhnika i tekhnologii [Aerospace Technic and Technology]. 2010, no. 7, pp. 168–172.
[2] Kuznetsov Iu.P., Kuznetsova T.Iu. Soglasovanie parametrov neavtonomnogo pnevmaticheskogo privoda s gidravlicheskimi kharakteristikami podvodiashchei sistemy [Matching parameters nonautonomous pneumatic actuator with the hydraulic characteristics of the conduction system]. Energeticheskie ustanovki i teplotekhnika. Sb. tr. [Power plants and heating engineer: proceedings]. Nizhny Novgorod, NSTU publ., 2010, iss. 2, pp. 86–94.
[3] Bykov N.N., Emin O.N. Vybor parametrov i raschet malomoshchnykh turbin dlia privoda agregatov [Selection of parameters and calculation of the low-power turbines for the drive units]. Moscow, Mashinostroenie publ, 1972. 228 p.
[4] Natalevich A.S. Vozdushnye mikroturbiny [Air microturbines]. Moscow, Mashinostroenie publ., 1979. 192 p.
[5] Kalabukhov D.S., Grigor’ev V.A., Rad’ko V.M. Optimal’noe proektirovanie turbin sverkhmaloi moshchnosti v sisteme turboprivoda [Problems of ultralow power turbine design in a turbine drive system]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta [Vestnik of the Samara State Aerospace University]. 2014, no. 5 (47), pp. 203–214.
[6] Kalabukhov D.S., Grigor’ev V.A., Rad’ko V.M. Formirovanie metoda vybora ratsional’nykh znachenii parametrov turbiny sverkhmaloi moshchnosti v sisteme turboprivoda [Formation of a method of choosing rational values of ultralow power turbine parameters in a turbine drive system]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta [Vestnik of the Samara State Aerospace University]. 2014, no. 5 (47), pt. 2, pp. 207–216.
[7] Grigor’ev V.A., Rad’ko V.M., Kalabukhov D.S. Vybor diapazonov i urovnei var’irovaniia faktorov plana eksperimenta pri ispytaniiakh odnostupenchatykh turbin sverkhmaloi moshchnosti [Choise of the range and levels of varying the factors of the experiment plan for testing single-stage ultralow power turbine]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta [Vestnik of the Samara State Aerospace University]. 2011, no. 6, pp. 92–105.
[8] Matveev V.N., Musatkin N.F. Sovmestnoe vliianie effektivnogo ugla i velichiny gorla na effektivnost’ soplovogo apparata tsentrostremitel’noi mikroturbiny [The combined influence of the effective angle and magnitude of the efficiency of the throat nozzle unit centripetal microturbines]. Proektirovanie i dovodka aviatsionnykh gazoturbinnykh dvigatelei [Design and finishing aircraft gas turbine engines]. 1992, pp. 80–84.
[9] Tikhonov N.T., Pfaifle E.E. Sovmestnoe vliianie vysoty lopatok soplovogo apparata i stepeni partsial’nosti na ekonomichnost’ osevoi mikroturbiny [The combined influence of the height of the blades of the nozzle apparatus and the degree of partiality on efficiency axial microturbines]. Izv. vuzov. Problemi energetiki [Proceedings of the universities. Energetics]. 1989, no. 3, pp. 105–106.
[10] Matveev V.N., Musatkin N.F. Eksperimental’noe opredelenie vliianiia faktora masshtabnosti na KPD mikroturbin [Experimental determination of the influence of the scale factor on the efficiency of microturbines]. Izv. vuzov. Aviatsionnaia tekhnika [Russian Aeronautics]. 1997, no. 2, pp. 65–69.
[11] Epifanov A.A., Kirillov A.I., Rassokhin V.A. Raschet kharakteristik lopatochnykh reshetok maloraskhodnykh turbin [Calculation of characteristics of blade arrays low-cost turbines]. Nauchno-tekhnicheskie vedomosti SPbGPU [St. Petersburg State Polytechnical University Journal]. 2012, iss. 1, pp. 50–55.
[12] Ovsiannikov B.V., Borovskii B.I. Teoriia i raschet agregatov pitaniia zhidkostnykh raketnykh dvigatelei [Theory and calculation of aggregates supply of liquid rocket engines]. Moscow, Mashinostroenie publ., 1986. 376 p.
[13] Musatkin M.F., Rad’ko V.M. K voprosu raspredeleniia teploperepada v dvukhstupenchatykh osevykh malorazmernykh turbinakh so stupeniami davleniia [To a Problem on Distribution of Heat Drop in Two-Stage Axial-Flow Small Turbines with Pressure Stages]. Izv. vuzov. Aviatsionnaia tekhnika [Russian Aeronautics]. 2003, no. 3, pp. 40–42.
[14] Semashko P.V. Aerodinamicheskoe sovershenstvovanie malorazmernykh turbin s tsel’iu povysheniia effektivnosti pnevmoprivodov. Diss. kand. tekhn. nauk [Aerodynamic improvement of small turbines in order to increase the efficiency of pneumatic actuators. Cand. tehn. sci. diss.]. St. Petersburg, 1994. 17 p.
[15] Shablii L.S. Opredelenie parametrov potoka za rabochim kolesom mikroturbinnogo privoda [Determination of flow parameters for the micro turbine impeller drive]. 34 «Gagarinskie chteniia»: nauchnye trudy Mezhdunarodnoi molodezhnoi konferentsii, Moskva, 1–5 aprelia 2008 [34 «Gagarin’s Readings»: scientific works of the International Youth Conference, in 8 volumes, Moscow, April 1–5, 2008]. Moscow, MATI publ., 2008, vol. 8, pt. 2, pp. 62–64.