Predicting Finishing Grinding Conditions for High-Speed Cutting Plates of Variable Compliance Using Multiparametric Optimization of Roughness
Authors: Soler Y.I., Van Canh Nguyen, Hoang Ngoc Anh | Published: 18.04.2017 |
Published in issue: #4(685)/2017 | |
Category: Technology and Process Machines | |
Keywords: grinding high-speed cutting plates, multiparametric optimization, Design-Expert 8.0.4.1 software, technological factors (parameters), regression models |
This paper describes the possibility of managing the grinding process of built-up plates made of high-speed steel in order to improve performance, reduce labour intensity and the length of technological preparation, while guaranteeing the specified quality of the microrelief. To increase efficiency of robust design of grinding operations, the authors use Design-Expert 8.0.4.1 software to search for Models I of the multivariate analysis of variance. Multiparametric optimization of the process with regard to the service function of the tool is performed. The optimal grinding conditions for finish grinding (highest efficiency) of built-up tools for each level of rigidity are obtained. It is established that by selecting the optimal grinding conditions, it is possible to increase the efficiency of the process up to 1.7 times for high-speed plates with variable longitudinal rigidity and up to 1.3 times for high-speed plates with variable transversal rigidity.
References
[1] Riabtsev S.A. Razrabotka abrazivnogo instrumenta s povyshennoi strukturnost’iu i upravliaemoi poristost’iu dlia vysokoproizvoditel’nogo shlifovaniia fasonnykh poverkhnostei detalei iz trudnoobrabatyvaemykh materialov. Diss. dokt. tekhn. nauk [Development of abrasive tools with high structure and controllable porosity for high-performance grinding of contoured surfaces of parts from hard materials. Dr. tech. sci. diss.]. Moscow, 2011. 44 p.
[2] Pilinskii A.V. Innovatsionnye metody i vyzovy v skorostnom i ul’traskorostnom shlifovanii [Innovative methods and challenges in high speed and ultra-high-speed grinding]. Vektor nauki TGU [Vector of science TSU]. 2015, no. 2(32–2), pp. 136–144.
[3] Kireev V.P. Uprochnenie bystrorezhushchei stali dinamicheskim mikrolegirovaniem i ego vliianie na iznosostoikost’ rezhushchego instrumenta [Hardening of high speed steel by dynamic microalloying and its effect on wear resistance of cutting tool]. Izvestiia Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk [Proceedings of the Samara Scientific Center of the Russian Academy of Sciences]. 2015, vol. 17, no. 6(2), pp. 414–418.
[4] Bogodukhov S.I., Kozik E.S. Materialovedenie [Materials science]. Moscow, Innovatsionnoe mashinostroenie publ., 2015. 504 p.
[5] Leon R., Shumeiker A., Kakar R., Kats L., Fadke M., Taguti G., Spini D., Griko M., Lin K., Nazaret U., Klinger U., Neir V., Dekhnad K., Pregibon D. Upravlenie kachestvom. Robastnoe proektirovanie. Metod Taguti [The management of quality. Robust design. Taguchi Method]. Moscow, SEIFI publ., 2002. 384 p.
[6] Sandgren E., Cameron T.M. Robust design optimization of structures through consideration of variation. Computers and Structures, 2002, vol. 80, no. 20–21, pp. 1605–1613.
[7] Das I. Robustness optimization for constrained nonlinear programming problems. Engineering Optimization, 2000, vol. 32, is. 5, pp. 585–618.
[8] Abrasive Technological Excellence. Norton Saint-Gobain, 2012. 569 p.
[9] Soler Ya.I., Gaisin S.N., Kazimirov D.Iu. Statisticheskie modeli mikrogeometrii poverkhnosti pri ploskom shlifovanii abrazivnymi vysokoporistymi krugami detalei peremennoi zhestkosti iz stali 12Kh18N10T [Statistical models microgeometry surface at flat grinding wheel abrasive highly porous mi details variable rigidity of steel 12X18H10T]. Metalloobrabotka [Metallobrabotka]. 2005, no. 3(27), pp. 12–16.
[10] Soler Ya.I., Lgalov V.V. Predicting the surface microrelief of press-mold components in abrasive grinding. Russian Engineering Research, 2013, vol. 33, no. 4, pp. 229–235.
[11] Dasthagiri B., Venu gopal Goud Dr.E. Optimization Studies on Surface Grinding Process parameters. International Journal of Innovative Research in Science. Engineering and Technology, 2015, vol. 4, is. 7, pp. 6148–6156, doi:10.15680/IJIRSET.2015.0407166.
[12] Myers R.H., Montgomery D.C. Response surface methodology: process and product optimization using designed experiments. New York, Wiley, 2002. 824 p.
[13] Nguyen V.C., Soler Ya.I. Privlechenie Design of Experiments dlia poiska modelei i prognozirovaniia makrogeometrii poverkhnosti bystrorezhushhih plastin pri razlichnyh rezhimah shlifovaniia [Using Design of Experiments for search models and prediction of surface macrogeometry of high-speed cutting plates at flat grinding]. Vestnik irkutskovo gosudarstvennovo tehnicheskovo universiteta [Proceedings of Irkutsk State Technical University]. 2016, no. 12(119), с. 60–71.
[14] Bez"iazychnyi, V.F. Prokop’ev M.A. Voprosy optimizatsii ploskogo shlifovaniia po parametram kachestva poverkhnostnogo sloia vysokonagruzhennykh detalei iz zharoprochnykh splavov [Issues of optimization of surface grinding parameters on the quality of surface layers of highly loaded parts from high-temperature alloys]. Spravochnik. Inzhenernyi zhurnal s prilozheniem [Handbook. An Engineering journal with appendix]. 2008, no. S8, pp. 2–4.
[15] Suslov A.G. Bez"iazychnyi V.F., Panfilov Iu.V., Bishutin S.G., Govorov I.V., Gorlenko A.O., Gorlenko O.A., Petreshin D.I., Sakalo V.I., S"ianov S.Iu., Tikhomirov V.P., Fedonin O.N., Fedorov V.P., Finatov D.N., Shcherbakov A.N. Inzheneriia poverkhnosti detalei [Surface engineering of parts]. Moscow, Mashinostroenie publ., 2008. 320 p.
[16] Myers R.H., Montgomery D.C., Anderson-Cook C.M. Response surface method-ology: process and product optimization using designed experiments. New Jersey, John Wiley & Sons, 2009. 704 p.
[17] Montgomery I.D. Design and analysis of experiment. New Jersey, John Wiley & Sons, 2012. 752 p.
[18] Soler Ya.I. Strelkov A.B. Robastnoe proektirovanie nitridborovogo shlifovaniia ploskikh detalei razlichnoi podatlivosti iz stali 13Kh15N4AM3 [Robust designing of the boron nitride grinding of the flat components of various compliance from steel 134X15H4AM3]. Tekhnologiia mashinostroeniia [Tekhnologiya Mashinostroeniya]. 2010, no. 5, pp. 5–14.
[19] Soler Ya.I., Strelkov A.B., Repei E.O. Robastnoe proektirovanie shlifovaniia ploskikh detalei razlichnoi podatlivosti vysokoporistymi instrumentami [Robust design of different ductility flat part grinding with high porous abrasive tools]. Vestnik IrGTU [Proceedings of Irkutsk State Technical University]. 2016, no. 1(108), pp. 16–24.
[20] GOST 2789–73. Sherokhovatost’ poverkhnosti. Parametry i kharakteristiki [State Standart 2789–73. Surface roughness. Parameters and characteristics]. Moscow, Standartinform publ., 2005. 7 p.