Losses in the Inlet and Outlet Ducts of Oil-Free Scroll Vacuum Pumps
Authors: Raykov A.A., Burmistrov A.V., Salikeev S.I., Gimaltynov A.T., Yakupov R.R. | Published: 17.05.2017 |
Published in issue: #5(686)/2017 | |
Category: Technology and Process Machines | |
Keywords: scroll vacuum pump, duct resistance, gas flow rate, gas flow regime, flow coefficient, pumping speed |
Scroll vacuum pumps are widely used for producing low and medium vacuum. The production of scroll pumps in Russia has just begun, and a reliable method for calculating pump characteristics is necessary to further develop and upgrade the pumps. A mathematical model of a pump should take into consideration the flow between the working chambers, heat exchange, thermal deformations of the scroll elements, mobility of the channel walls, resistance of the inlet and outlet ducts. In this work, flow coefficients of the inlet and outlet ducts of a typical scroll pump are obtained by modeling using the finite volume method. Geometry of the outlet duct varies according to the rotation angle of the driveshaft because partial overlap of the outlet vent occurs when the orbiting scroll element moves. That is why for the outlet shaft, the calculation is performed for different positions of the scroll element. The calculations cover laminar and turbulent flow regimes. The dependence of the pumping speed on the inlet pressure is calculated using the obtained flow coefficients. It is shown that the influence of duct resistance becomes apparent only in the low pressure range.
References
[1] Kapustin E.N., Kapustin A.E., Burmistrov A.V., Salikeev S.I. Sozdanie vysokotekhnologichnogo proizvodstva bezmaslianykh spiral’nykh vakuumnykh nasosov v Rossii [Creating hightech production of oilfree scroll vacuum pumps in Russia]. Vestnik Kazanskogo tekhnologicheskogo universiteta [Vestnik Kazanskogo Technological University]. 2014, vol. 17, no. 19, pp. 280–283.
[2] Chen Y., Halm N.P., Groll E.A., Braun J.E. Mathematical modeling of scroll compressors–part I: compression process modeling. International Journal of Refrigeration, 2002, vol. 25, no. 6, pp. 731–750.
[3] Chen Y., Halm N.P., Braun J.E., Groll E.A. Mathematical modeling of scroll compressors–part II: overall scroll compressor modeling. International Journal of Refrigeration, 2002, vol. 25, no. 6, pp. 751–764.
[4] Pietrowicz S., Yanagisawa T., Fukuta M., Gnutek Z. Mathematical Modeling of Physical Pro-cesses In the Scroll Compressor Chamber. International Compressor Engineering Conference, 2002, paper 1589. Available at: http://docs.lib.purdue.edu/icec/1589 (accessed 15 January 2017).
[5] Blunier B., Cirrincione G., Hervé Y., Miraoui A. A new analytical and dynamical model of a scroll compressor with experimental validation. International Journal of Refrigeration, 2009, vol. 32, no. 5, pp. 874–891.
[6] Rong C., Wen W. Discussion on leaking characters in mesoscroll compressor. International Journal of Refrigeration, 2009, vol. 32, no. 6, pp. 1433–1441.
[7] Ooi K.T., Zhu J. Convective heat transfer in a scroll compressor chamber: a 2-D simulation. International Journal of Thermal Sciences, 2004, vol. 43, no. 7, pp. 677–688.
[8] Lin C., Chang Y., Liang K., Hung C. Temperature and thermal deformation analysis on scrolls of scroll compressor. Applied Thermal Engineering, 2005, vol. 25, no. 11–12, pp. 1724–1739.
[9] Raikov A.A., Salikeev S.I., Burmistrov A.V. Issledovanie poter’ vo vkhodnom i vykhodnom traktakh kulachkovo-zubchatogo vakuumnogo nasosa [Estimation of inlet and outlet losses in the claw pump]. Kompressornaia tekhnika i pnevmatika [Compressors and Pneumatics]. 2009, vol. 8, pp. 13–18.
[10] Raikov A.A., Burmistrov A.V., Salikeev S.I., Kapustin E.N. Modelirovanie techeniia gaza vo vkhodnom i vykhodnom traktakh spiral’nogo vakuumnogo nasosa [Modeling of gas flow in the inlet and outlet tracts of the scroll vacuum pump]. Materialy 23 nauchno-tekhnicheskoi konferentsii «Vakuumnaia nauka i tekhnika» s uchastiem zarubezhnykh spetsialistov pod redaktsiei S.B. Nesterova [Materials of the 23 scientific-technical conference «Vacuum science and technology» with the participation of foreign specialists under the editorship of S.B. Nesterov]. Moscow, NOVELLA publ., 2016, pp. 70–74.
[11] KOMPAS-3D V9. Rukovodstvo pol’zovatelia [KOMPAS-3D V9. User manual]. Askon publ., 2007. 204 p.
[12] Raikov A.A., Iakupov R.R., Salikeev S.I., Burmistrov A.V., Bronshtein M.D. Vserezhimnaia matematicheskaia model’ rabochego protsessa spiral’nogo vakuumnogo nasosa [Allregimes mathematical model of scroll vacuum pump working process]. Kompressornaia tekhnika i pnevmatika [Compressors and Pneumatics]. 2014, no. 1, pp. 18–25.
[13] Sagitov A.R., Raikov A.A., Salikeev S.I., Burmistrov A.V. Matematicheskaia model’ spiral’nogo bezmaslianogo vakuumnogo nasosa [A mathematical model of the rotary scroll oilfree vacuum pump]. Materialy 6 Rossiiskoi studencheskoi nauchno-tekhnicheskoi konferentsii «Vakuumnaia tekhnika i tekhnologiia» [Proceedings of the 6 Russian student scientific and technical conference «Vacuum equipment and technology»]. Kazan, KSTU publ., 2013, pp. 95–96.
[14] Demikhov K.E., Panfilov Iu.V., red. Vakuumnaia tekhnika: spravochnik [Vacuum technology: a handbook]. Moscow, Mashinostroenie publ., 2009. 590 p.
[15] Ibragimov E.R. Povyshenie effektivnosti spiral’nogo kompressora sukhogo szhatiia. Diss. kand. tekh. nauk [Improving the efficiency of scroll compressors. Cand. tech. sci. diss.]. Kazan’, 2009. 136 p.