Technological Principles of Increasing Wear Resistance of Parts by Electromechanical Surface Hardening
Authors: Fedorova L.V., Fedorov S.K., Ivanova Y.S., Lompas A.M. | Published: 06.09.2017 |
Published in issue: #9(690)/2017 | |
Category: Technology and Process Machines | |
Keywords: tool joint hardening, electromechanical surface hardening, wear resistance of rubbing surfaces, electromechanical treatment, surface layer hardness |
The durability of a wide range of machine parts largely depends not on the metal quality throughout the cross-section of the part but on the structural condition and physical and mechanical properties of the surface layer. It is the surface layer that determines operational properties of the parts such as wear resistance, strength, material resistance to fatigue failure, contact fatigue, corrosion resistance and other properties. At present, the existing methods of increasing surface wear resistance by only volumetric heat treatment have been nearly exhausted. To increase durability, leading manufacturers in Russia and abroad use surface plastic deformation, chemical and thermal treatment, finish anti-friction abrasive treatment, finish plasma hardening, non-abrasive ultrasonic finishing, laser and plasma hardening, and electric spark alloying to improve the surface layer quality. The most effective way to reduce the cost of manufacturing and improve the machine quality is the technology of surface treatment by concentrated energy flows. These surface treatment methods have a number of features that favorably distinguish them from other heat treatment options. One of such methods is electromechanical surface hardening of steel parts. Using this technology, it is possible to improve wear resistance of tool joints and ensure safety of the casing through the tool joint surface hardening.
References
[1] Pakhomova S.A., Ryzhova M.Iu., Fakhurtdinov R.S., Makushina M.A., Pikalov A.I., Usova V.V., Iushin N.A. Kontaktnaia vynoslivost’ i iznosostoikost’ teplostoikoi stali posle raznykh vidov tsementatsii [Contact fatigue and wear resistance of heat-resistant steel after different kinds of carburizing]. Vestnik nauchno-tekhnicheskogo razvitiia [Bulletin of scientific-technical development]. 2016, no. 9(109), pp. 19–28.
[2] Pakhomova S.A., Fakhurtdinov R.S., Ryzhova M.Iu. Osobennosti vakuumnoi tsementatsii detalei dlia gornodobyvaiushchei promyshlennosti [Features vacuum carburizing parts for the mining industry]. Sovremennye innovatsionnye tekhnologii podgotovki inzhenernykh kadrov dlia gornoi promyshlennosti i transporta [Contemporary innovation technique of the engineering personnel training for the mining and transport industry]. 2016, no. 3, pp. 108–116.
[3] Karpukhin S.D., Bykov Iu.A. Svetovaia mikroskopiia i kolichestvennaia obrabotka izobrazhenii struktur materialov [Light microscopy and quantitative image processing of material structures]. Moscow, Bauman Press, 2003. 48 p.
[4] Fakhurtdinov R.S., Ryzhova M.Y., Pakhomova S.A. Advantages and commercial application problems of vacuum carburization. Polymer Science, Series D, 2017, vol. 10, is. 1, pp. 79–83.
[5] Bykov Iu.A., Unchikova M.V., Pakhomova S.A., Pomel’nikova A.S., Silaeva V.I. Metodika vybora materiala i tekhnologii termicheskoi obrabotki detalei mashinostroeniia [Selection method of material and heat treatment technology for mechanical engineering parts]. Zagotovitel’nye proizvodstva v mashinostroenii [Blanking Productions in Mechanical Engineering]. 2015, no. 8, pp. 43–47.
[6] Pomel’nikova A.S., Fetisov G.P., Pakhomova S.A. K voprosu uprochneniia razlichno legirovannykh stalei obrabotkoi v koronnom razriade [On problem of hardening of differently alloyed steels by treatment in corona discharge]. Tekhnologiia metallov [Technologiya Metallov]. 2017, no. 2, pp. 20–24.
[7] Kuksenova L.I., Gerasimov S.A., Lapteva V.G., Alekseeva M.S. Fizicheskie osnovy kriterial’noi otsenki tekhnologii azotirovaniia detalei uzlov treniia [Physical fundamentals of criterial estimation of nitriding technology for parts of friction units]. Metallovedenie i termicheskaia obrabotka metallov [Metallography and heat treatment of metals]. 2012, no. 12, pp. 39–47.
[8] Pakhomova S.A., Unchikova M.V., Fakhurtdinov R.S. Gear wheels surface engineering by deformation hardening and carburization. Materials Science Forum, 2016, vol. 870, pp. 383–391.
[9] Pakhomova S.A., Ryzhov N.M., Vasilev V.R. Document Changes in the structure of martensite of iron-nickel alloys under the action of thermal shotblast treatment. Metal Science and Heat Treatment, 2001, vol. 43, no. 11–1, pp. 438–439.
[10] Pakhomova S.A., Ryzhov N.M. Change of structure and properties of iron-nickel alloys in shot-impact hardening. Metal Science and Heat Treatment, 1990, vol. 32, no. 5–6, pp. 422–426.
[11] Shilovskii A.V. Khardbanding na zashchite buril’noi truby [Hardbanding on the protection of drill pipe]. Burenie i neft’ [Drilling and oil]. 2016, no. 4, pp. 58–59.
[12] Fedorova L.V., Fedorov S.K., Serzhant A.A., Golovin V.V., Systerov S.V. Elektromekhanicheskaia poverkhnostnaia zakalka stalei dlia nasosno-kompressornykh trub [Electromechanical surface hardening of tubing steels]. Metallovedenie i termicheskaia obrabotka metallov [Metallography and heat treatment of metals]. 2017, no. 3, pp. 41–44.
[13] Fedorova L.V., Fedorov S.K., Ivanova Iu.S., Isaev K.R. Struktura i iznosostoikost’ stali 65G posle elektromekhanicheskoi poverkhnostnoi zakalki [Structure and wear-resistance of 65Г steel after electromechanical surface hardening]. Tekhnologiia metallov [Technologiya Metallov]. 2017, no. 3, pp. 27–31.
[14] Morozov A.V., Fedorova L.V., Gorev N.N., Shamukov N.I. Issledovanie vliianiia rezhimov segmentnoi elektromekhanicheskoi zakalki na formirovanie uchastkov reguliarnoi mikrotverdosti [A study on the effect of the segment of electromechanical hardening to form a regular plot microhardness]. Sborka v mashinostroenii, priborostroenii [Assembling in Mechanical Engineering and Instrument-Making]. 2016, no. 2, pp. 24–27.