Research into the Influence of Design and Technological Parameters on the Strength-to-Weight Ratio of Porous Net Materials
Authors: Tretyakov A.F. | Published: 19.12.2017 |
Published in issue: #12(693)/2017 | |
Category: Technology and Process Machines | |
Keywords: porous net materials, metal mesh, pressure welding, strength-to-weight ratio, porosity, density |
The article presents calculated dependencies to evaluate the influence of mechanical properties and density of mesh wires, their geometry, relative positions and technological parameters of welding on the strength-to-weight ratio when manufacturing porous net materials. It is shown that the porosity of such materials is determined by the design of the briquette and its reduction rate in the process of pressure welding of mesh wires. It is established that mesh lengthening has an influence on the properties of materials with porosity of less than 0.1. The analysis of the obtained dependencies and calculation results has shown that porous net materials with parallel layout of filter mesh along the fillers (y-axis) have a higher strength-to-weight ratio, while those along the base (x-axis) have the minimum value. The strength-to-weight ratio of the materials with square mesh does not depend on the reduction rate of the briquettes but is determined only by the properties of the wire material and the geometrical parameters of the mesh. It is shown that an increase in the strength-to-weight of such materials with porosity of less than 0.2 occurs due to the formation of inter-filler welded joints in the plane perpendicular to the direction of the stretching force.
References
[1] Sinel’nikov Iu.I., Tret’iakov A.F., Maturin N.I., Kolesnikov A.G., Panov A.D., Makarochkin V.I. Poristye setchatye materially [The porous mesh material]. Moscow, Metallurgiia publ., 1983. 64 p.
[2] Spiridonov V.S., Novikov Iu.M., Bol’shakov V.A. Fil’troval’nye peregorodki iz spechennykh metallicheskikh setok dlia vstroennykh fil’trov aviatsionnykh gidrosistem [Filtering Walls Мade of Sintered Metal Gauzes for Built-in Filters of Aviation Hydraulic Systems]. Bezopasnost’ v tekhnosfere [Safety in technosphere]. 2015, no. 4, pp. 39–45.
[3] Sparks T., Chase G. Filters and Filtration. Handbook. Elsevier, 2013. 444 p.
[4] Devisilov V.A., Spiridonov V.S. Metallicheskie provolochnye setki dlia fil’trovaniia zhidkostei i gazov. Chast’ 1. Strukturnye kharakteristiki i ikh raschet [Metal wire grids for filtering liquids аnd gases. Рart 1. Structural characteristics and their calculation]. Bezopasnost’ v tekhnosfere [Safety in technosphere]. 2009, no. 3, pp. 46–55.
[5] Pelevin F.V., Avramov N.I., Orlin S.A., Sintsov A.L. Effektivnost’ teploobmena v poristykh elementakh konstruktsii zhidkostnykh raketnykh dvigatelei [Heat exchange efficiency in porous structural elements of liquid-propellant rocket engines]. Inzhenernyi zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation]. 2013, is. 4. Available at: http://engjournal.ru/articles/698/698.pdf (accessed 15 June 2017).
[6] Zeigarnik Iu.A., Poliakov A.F., Strat’ev V.K., Tret’iakov A.F., Shekhter Iu.L. Ispytaniia poristogo setchatogo materiala v kachestve obolochki lopatok vysokotemperaturnykh gazovykh turbin [Tests porous mesh material as the sheath gas turbine blade of high]. Moscow, Preprint OIVT RAN, 2010, no. 2-502. 64 p.
[7] Bunker R.S. Gas turbine cooling. Moving from macro to micro cooling. Proceedings of the ASME Turbo Expo, 2013. 3 p.
[8] Novikov Iu.M., Bol’shakov V.A. Inzhenernaia shkola MGTU im. N.E. Baumana: kombinirovannye poristye setchatye materialy. Effektivnye, bezopasnye i ekologichnye izdeliia na ikh osnove [School of engineering Bauman Moscow State Technical University: combined porous mesh materials. Efficient, safe and environmentally friendly products on their basis]. Bezopasnost’ zhiznedeiatel’nosti [Life safety]. 2015, no. 11, pp. 53–56.
[9] Tret’iakov A.F. Issledovanie mekhanicheskikh i tekhnologicheskikh svoistv listovykh poristykh setchatykh materialov iz stali 12Kh18N10T [Investigation of mechanical and technological properties of porous meshed material sheets of steel 12X18H10T]. Inzhenernyi zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation]. 2016, is. 6. Available at: http://engjournal.ru/articles/1498/1498.pdf (accessed 15 June 2017).
[10] Tret’iakov A.F. Vliianie konstruktivnykh i tekhnologicheskikh parametrov na anizotropiiu mekhanicheskikh svoistv poristykh materialov [The Influence of Structural, Technological Parameters and Strain State on Anisotropy of Mechanical Properties of Sheet Porous Net Materials]. Izvestiia vysshikh uchebnykh zavedenii. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building]. 2016, no. 12, pp. 87–96.
[11] Poristye pronitsaemye materialy: spravochnik [Porous permeable materials: Handbook]. Ed. Belov S.V. Moscow, Metallurgiia publ., 1987. 335 p.
[12] Tret’iakov A.F. Tekhnologicheskaia nasledstvennost’ v protsesse izgotovleniia izdelii iz poristykh setchatykh materialov s zadannymi svoistvami. Soobshchenie 1. Vliianie konstruktsii briketa setok i otnositel’nogo obzhatiia strukturoobrazuiushchikh elementov na poristost’ listovykh zagotovok [Technological heredity in the process of manufacture of porous mesh materials with desired properties. Message 1. The effect of the structure of the briquette grids and the relative compression-forming elements on the porosity of sheet materials]. Proizvodstvo prokata [Rolled Products Manufacturing]. 2013, no. 5, pp. 32–42.