Research into the Possibility of Improving Properties of Carbon Fibers at Compression and Shear by Stitching Carbon Preforms with Aramid Threads
Authors: Mikheev P.V., Gusev S.A., Belokopytova K.E., Ageyeva T.G., Malyshev A.N. | Published: 02.04.2018 |
Published in issue: #3(696)/2018 | |
Category: Technology and Process Machines | |
Keywords: carbon fiber reinforced polymer, stitching of dry performs, aramid fibers, strength at compression, strength at shift, impregnation by resin |
In this work, the technological capabilities of stitching a dry preform of carbon fabrics before impregnation with epoxy resin is investigated. Two types of high-modulus aramid yarn – Armalon and Aramos – with linear density of 7.9 and 60 tex respectively are used. Reinforcement patterns, from the unidirectional to the quasi-isotropic one, are investigated. Using the obtained samples of carbon fibre with the thickness of up to 5 mm, strength at compression for various layup patterns, shear strength and impact strength are determined. A qualitative comparison of the modulus of elasticity for stitched and non-stitched samples is performed. It is shown that stitching by high-modulus threads is possible and does not hinder the movement of resin at the infusion. The shear strength increased by 30% but only when threads of linear density of 60 tex were used. It shows that even such a prominent thread in the structure (approximately 0.1 mm after curing) did not become a significant defect. The impact strength did not change, while the failure resistance and modulus of elasticity at compression showed a tendency to grow in values.
References
[1] Mikhailin Iu.A. Voloknistye polimernye kompozitsionnye materialy v tekhnike [Fibrous polymer composite materials in engineering]. Sankt-Petersburg, Professiia publ., 2013. 752 p.
[2] Mett’iuz F., Rolings R. Kompozitnye materialy. Mekhanika i tekhnologiia [Composite materials. Mechanics and technology]. Moscow, Tekhnosfera publ., 2004. 408 p.
[3] Polilov A.N., Tatus’ N.A. Eksperimental’no obosnovanie kriteriev prochnosti voloknistykh kompozitov, proiavliaiushchikh napravlennyi kharakter razrusheniia [Experimental substantiation of strength criteria for FRP showing directional type of fracture]. Vestnik PNIPU. Mekhanika [PNRPU Mechanics Bulletin]. 2012, no. 2, pp. 140–163.
[4] Reznik S.V. Aktual’nye problemy proektirovaniia, proizvodstva i ispytaniia raketno-kosmicheskikh kompozitnykh konstruktsii [Topical problems of rocket-space composite structures designing, production and testing]. Inzhenernyi zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation]. 2013, is. 3. Available at: http://engjournal.ru/catalog/machin/rocket/638.html (accessed 15 November 2017).
[5] Skopinskii V.N. Spetsglavy mekhaniki konstruktsii [Special chapters of structural mechanics]. Moscow, MGIU publ., 2003. 144 p.
[6] Tarnopol’skii Iu.M., Zhigun I.G., Poliakov V.A. Prostranstvenno-armirovannye kompozitsionnye materialy. Spravochnik [Space-reinforced composite materials. Handbook]. Moscow, Mashinostroenie publ., 1987. 224 p.
[7] Smotrova S.A., Naumov S.M., Smotrov A.V. Tekhnologii izgotovleniia silovykh agregatov aviatsionnykh konstruktsii [Manufacturing technology of power units of aircraft structures made of composite materials]. Moscow, Tekhnosfera publ., 2015. 216 p.
[8] Vasiliev V.V., Morozov E. Advanced Mechanics of Composite Materials and Structural Elements. Elsevier, 2013. 816 p.
[9] Liu L., Zhang T., Wang P., Legrand X., Soulat D. Influence of the tufting yarns on formability of tufted 3-Dimensional composite reinforcement. Composites Part A: Applied Science and Manufacturing, 2015, vol. 78, pp. 403–411.
[10] Liu L., Wang P., Legrand X., Soulat D. Investigation of mechanical properties of tufted composites: Influence of tuft length through the thickness reinforcement. Composite Structures, 2017, vol. 172, pp. 221–228.
[11] Chen X., Chen L., Zhang C., Song L., Zhang D. Three-dimensional needle-punching for composites — A review. Composites Part A: Applied Science and Manufacturing, 2016, vol. 85, pp. 12–30.
[12] Mouritz A.P. Review of z-pinned composite laminates. Composites Part A: Applied Science and Manufacturing, 2007, vol. 38, pp. 2383–2397.
[13] Kavun N.S., Davydova I.F., Grebneva T.V. Vliianie proshivki stekliannogo i uglerodnogo armiruiushchikh volokon na ostatochnuiu prochnost’ kompozitsionnogo materiala posle udara [An effect of stitching glass and carbon reinforcements on residual strength of composite materials after impact]. Kompozity i nanostruktury [Composites and Nanostructures]. 2013, no. 1, pp. 20–23.
[14] Hong H., Mingxing Z., Fangueiro R., De Araujo M. Mechanical properties of composite materials made of 3d stitched woven-knitted preforms. Journal of Composite Materials, 2010, vol. 44, no. 14, pp. 1753–1767.
[15] Mikheev P.V., Orlov M.A., Malyshev A.N., Shatalov R.L., Vetrov E.Iu. Ispol’zovanie aramidnykh volokon dlia uvelicheniia prochnosti ugleplastika pri sdvige vdol’ sloev [Use of aramid fibers to increase strength of carbon fiber shear along layers]. Izvestiia Moskovskogo gosudarstvennogo tekhnicheskogo universiteta MAMI [Proceedings of the Moscow State Technical University MAMI]. 2015, vol. 2, no. 1(23), pp. 37–40.
[16] Shatalov R.L., Verkhov E.Iu., Mikheev P.V., Orlov M.A. Vliianie proshivki preformy aramidnymi nitiami na sdvigovye kharakteristiki konechnogo izdeliia iz ugleplastika [Effect firmware preforms with aramid strands on the shear characteristics of the final product from carbon fiber]. Sistemnye tekhnologii [System technologies]. 2015, no. 3(16), pp. 37–43.
[17] Mikheev P.V., Dalinkevich A.A., Gusev S.A., Igonin T.N., Maksaeva L.B., Nenasheva T.A. Research of long-term properties of high-strength fiberglasses by means of the built-in FBG sensors. MATEC Web of Conferences, 2016, vol. 77, no. 05003, doi: 10.1051/matecconf/20167705003.
[18] Mikheev P.V., Muranov A.N., Gusev S.A. Eksperimental’noe opredelenie modulia mezhsloevogo sdviga sloistogo ugleplastika [Experimental definition of the module of interlayered shift of the layred carbon fibre reinforced plastic]. Konstruktsii iz kompozitsionnykh materialov [Composite materials constructions]. 2015, no. 4(140), pp. 46–50.
[19] Shakh V. Spravochnoe rukovodstvo po ispytaniiam plastmass i analizu prichin ikh razrusheniia [Reference manual on testing of plastics and analysis of the reasons for their destruction]. Sankt-Petersburg, Nauchnye osnovy i tekhnologii publ., 2009. 732 p.
[20] Grell’man V., Zaidler S. Ispytaniia plastmass [Testing of plastics]. Sankt-Petersburg, Professiia publ., 2010. 715 p.
[21] Tarnopol’skii Iu.M., Kintsis T.Ia. Metody staticheskikh ispytanii armirovannykh plastikov [Methods of static tests of reinforced plastics]. Moscow, Khimiia publ., 1981. 272 p.