Research of Methods Intensifying the Nitrous Oxide Decomposition in a Small-size Gas Generator with a Resonant Gasdynamic System for a Work-process Initiation
Authors: Arefyev K.Yu. | Published: 19.09.2013 |
Published in issue: #6(639)/2013 | |
Category: Technology and Process Machines | |
Keywords: gasdynamic system, shock wave, monopropellant, mathematical modeling |
Small-size gas generators are used to create a high enthalpic flow and can be used in the power-plants of aerospace equipment. Nitrous oxide (N2O) is a promising monopropellant for a small-size gas generator. However, the use of a monopropellant requires the problem solution of its decomposition intensifying. The research is aimed at finding the ways to increase the degree of N2O decomposition in the resonant gasdynamic systems initiating a work-process and that are applied to the small-size gas generators. The paper presents: a mathematical model; the research results of the gasdynamic flow picture with the account of chemical reactions; as well as a comparative analysis of methods for the monopropellant decomposition intensifying. The above methods are based on the use of catalyst units to increase the efficiency of N2O decomposition in the resonant gasdynamic system and can be applied to the small-size gas generators of various applications.
References
[1] Zakirov V.A., Lawrence T.J., Sellers J.J., Sweeting M.N. Nitrous Oxide as a Rocket Propellant, Proceedings of the 51-st International Astronautical Congress, Rio de Janeiro, Brazil, 2–6 October 2000, also published in Acta Astronautica, vol. 48 (5–12), 2001, pp. 353–362.
[2] Spitsyn V.I., Martynenko L.I. Neorganicheskaia khimiia [Inorganic chemistry]. Vol. 1. Moscow, Moscow University publ., 1991. 480 p.
[3] Ugriumov E.A. Gazodinamicheskie protsessy v generatore Gartmana [Gasdynamic processes in the generator Hartmann]. Vestnik LGU [Herald LGU]. 1986, no. 4, pp. 30–37.
[4] Antonov A.N., Kuptsov V.M., Komarov V.V. Pul’satsii davleniia pri struinykh i otryvnykh techeniiakh [Pulsation in inkjet and separated flows].Moscow,Mashinostroenie publ., 1990, 272 p.
[5] Semenov V.V., Sergienko A.A. Gazodinamicheskii vosplamenitel’ [Gasdynamic Igniter]. Izv. VUZ. Aviatsionnaya Tekhnika [Russian Aeronautics]. 2000, no. 2, pp. 45–54.
[6] Ivanov E.I., Kriukov I.A. Pul’satsionnye rezhimy techeniia v gazodinamicheskom vosplamenitele [Pulsating flow in a gas-dynamic igni ter ]. Matemat icheskoe Model i rovanie [Mathematical Models and Computer Simulations]. 1999, vol. 11, no. 2, pp. 45–54.
[7] Voronet ski i A.V. , Suchkov S.A. , Fi l imonov L.A. Osobennosti techeniia sverkhzvukovykh dvukhfaznykh potokov produktov sgoraniia v kanalakh so spetsial’no formiruemoi sistemoi skachkov uplotneniia [Peculiarities of high-temperature two-phase flow of combustion products in channels with an intentionally structured system of shock-waves]. Teplofizika i aeromekhanika [Thermophysics and Aeromechanics]. 2007, vol. 14, no. 2, pp. 209–218.
[8] Abramovich G.N. Prikladnaia gazovaia dinamika [Applied Gas Dynamics]. Moscow, Nauka publ., 1991. 600 p.
[9] Frik P.G. Turbulentnost’: podkhody i modeli [Turbulence: approaches and models]. Moscow, RKhD publ., 2010. 332 p.
[10] Godunov S.K., Zabrodin A.B., IvanovM.Ia., Kraiko A.N., Prokopov G.P. Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki [The numerical solution of multi-dimensional gas dynamics]. Moscow, Nauka publ., 1976. 400 p.
[11] Pirumov U.G. Chislennye metody [Numerical Methods]. Moscow, MAI publ., 1998. 188 p.
[12] Bakhvalov H.C. Chislennye metody. Moscow. Nauka publ., 1975, 632 p.
[13] Poliaev V.M., Maiorov V.A., Vasil’ev L.L. Gidrodinamika i teploobmen v poristykh elementakh konstruktsii letatel’nykh apparatov [Fluid dynamics and heat transfer in porous structural elements of aircraft]. Moscow, Mashinostroenie publ., 1988. 168 p.
[14] Zel’dovich Ia.B., Barenblatt G.I., Librovich V.B., Makhviladze G.M. Matematicheskaia teoriia goreniia i vzryva [The mathemat ical theory of combustion and explosion]. Moscow, Nauka publ., 1980. 478 p.
[15] Gaidey T.P.,Kokorin A.I., PilletN., SrukovaM.E., Sadov V.N., Haustova E.S., Shmurak G.G., Yaroshenko N.T. Perspective catalysts for N2O decomposition. 3rd Int. Conf. on Green Propellant for Space Propulsion, 2006, pp. 87–92.
[16] Boreskov G.K. Kataliz. Voprosy teorii i praktiki [Catalysis. Theory and Practice]. Novosibirsk, Nauka publ., 1987. 536 p.
[17] Mikhailov L.G. Kraevaia zadacha tipa zadachi Rimana dlia sistem differentsial’nykh uravnenii pervogo poriadka ellipticheskogo tipa i nekotorye integral’nye uravneniia [Boundary problem of the Riemann problem for systems of differential equations of the first order elliptic and some integral equations]. Uchenye zapiski Tadzhikskogo gosudarstvennogo universiteta [Proceedings of the Tajik State University]. Stalinabad, 1957, pp. 32–78.
[18] Arefyev K.J., Berlov I.V., Zakharov V.S., Ilchenko M.A. Numerical and experimental investigation of the resonant system model sample gasdynamic ignition hight-temperature flow generator. International Conference on the Methods of Aerophysical Research. Abstracts, part II, Kazan, Russia, 2012, pp. 21–22.