Technological aspects of creating structural ceramics using nano-sized boehmite powder and the possibility of its ultrajet diagnostics
Authors: Galinovsky A.L., Mulyar S.G., Sudnik L.V. | Published: 06.12.2013 |
Published in issue: #11(644)/2013 | |
Category: Technology and Process Machines | |
Keywords: ceramics, boehmite, tests, ultrajet, drummer |
Modern domestic structural ceramics is inferior to foreign analogues in a number of parameters, which explains the relevance of this paper. A solution to this problem is not only to improve the production process but also the structural composition of the initial material, as well as rapid methods to assess the properties of the final composition. This paper deals with the creation of structural ceramics based on nanoscale boehmite powder to improve technological, operational, and ballistic properties of structural composite ceramics. The results of the micromorphology analysis of structural ceramics chips after static and dynamic loading are compared. The obtained results are discussed and conclusions are drawn about the possibility of using the ultrajet diagnostic method at the technological preparation stage instead of expensive and time-consuming field tests with solid high-speed drummers. It is suggested that the ultrajet method for estimating performance (dynamic) properties of ceramics could be integrated with the diagnostic method based on measuring acoustic emission waves. The efficiency of ultrajet diagnostic methods is justified and the prospects of its application in the manufacture of structural composite ceramics are discussed. The main advantage of the method is the ability to diagnose a material in the laboratory, which is important for choosing technological processes at the preparation stage.
References
[1] Vitiaz’ P.A., Il’iushchenko A.F., Sudnik L.V., Mazalov Iu.A., Bersh A.V. Funktsional‘nye materialy na osnove gidroksida aliuminiia [Functional materials based on aluminum hydroxide]. Minsk, Belaruskaia navuka publ., 2010. 184 p.
[2] Sudnik L.V., Il’iushchenko A.F., Niss V.S., Poddenezhnyi E.N., Boiko A.A., Gaishun V.E., Semchenko A.V. Tekhnologicheskie osobennosti polucheni ia nanos t ruktur i rovannykh keramicheskikh poroshkov [Technological features of the preparation of nanostructured ceramic powders]. Respublikanskii mezhvedomstvennyi sbornik nauchnykh trudov Poroshkovaia metallurgiia [National Interagency collection of scientific papers Powder Metallurgy]. Minsk, Belaruskaia navuka publ., issue 34, 2011, pp. 70–78.
[3] Goranskii G.G., Sudnik L.V., Shelegov V.I. Termobaricheskie metody polucheniia tugoplavkoi keramiki [Thermobaric methods for refractory ceramics]. Minsk, BelNIINTI publ., 1991. 62 p.
[4] Bykov A.I., Gridneva I.V. Vzaimodeistvie karbida bora s karbidami titana i tsirkoniia pod davleniem [Interaction of boron carbide and zirconium carbide titanium pressure]. Poroshkovaia metallurgiia [Powder Metallurgy and Metal Ceramics]. 1998, no. 1–2, pp. 52–55.
[5] Barzov A.A., Galinovskii A.L., Puzakov V.S. Ul’trastruinye tekhnologii zhidkostei i suspenzii [Ultrajet technology liquids and slurries]. Moscow, Bauman Press, 2009. 250 p.
[6] Barzov A.A., Galinovskii A.L. Tekhnologiia ul’trastruinoi obrabotki i diagnostiki materialov [Technology ultrajet treatment and diagnostic materials]. Moscow, Bauman Press, 2009. 246 p.
[7] Barzov A.A. Emissionnaia tekhnologicheskaia diagnostika [The emission process diagnostics]. Moscow, Mashinostroenie publ., 2005. 384 p.
[8] Balashov O.E., Barzov A.A., Galinovskii A.L., Litvin N.K., Sysoev N.N., Shashurin V.D. Ul’trastruinaia tekhnologiia polucheniia mikrosuspenzii [Ultrajet technology for microsuspensions]. Moscow, Bauman Press, 2011. 352 p.
[9] Kovalenko V.I., Marinin V.G. Razrushenie keramiki pri vozdeistvii kavitatsii [Destruction of ceramics under the influence of cavitation]. KhFTI AN USSR publ., Preprint, Khar’kov, 1968, KhFTI 88/65, 7 p.
[10] Galkin D.I. Razrabotka metodiki bezobraztsovoi ekspress-diagnostiki povrezhdennosti metalla ekspluatiruemykh magistral’nykh nefteprovodov na osnove metoda akusticheskoi emissii. Avtoreferat diss. kand. tekhn. nauk [Development of methodology for rapid diagnosis bezobraztsovoy damage metal trunk pipelines operated on the basis of the acoustic emission method. Abstract cand. tehn. sci. diss.], Moscow, 2011. 16 p.
[11] Goritskii V.M. Diagnostika metallov [Diagnosis of metals]. Moscow, Metallurgizdat publ., 2004. 408 p.
[12] Tönshoff H.K., Jung M., Männel S., Rietz W. Using acoustic emission signals for monitoring of production process. Ultrasonics, 2000, vol. 37, pp. 681—686.
[13] Kamalov V.S., Barzov A.A., Vdovin A.A., Zarubina O.V. Sposob otsenki tverdosti materialov [A method of estimating the hardness of materials]. Certificate of authorship 1375994 USSR, MPK G01N3/42, no. 4053010, 1986.
[14] Adler W.F. Analytical modeling of liquid and solid particle erosion. Air Force Materials Laboratory, 1973. Pp. 73—174.
[15] El-Domiaty A., Abdel-Rahman A. Fracture mechanics-based model of abrasive waterjet cutting for brittle materials. International Journal of AdvancedManufacturing Technology, 1997, vol. 13, issue 3, pp. 172—181.
[16] Aydin G., Karakurt I., Aydiner K. An investigation on surface roughness of granite machined by abrasive waterjet. Bulletin of Materials Science, 2011, vol. 34, pp. 985—992.