Synthesis of discrete microactuators from specified functional parameters
Authors: Gavryushin S.S., McMillan A., Nikolaeva A.S. | Published: 29.01.2014 |
Published in issue: #1(646)/2014 | |
Category: Technology and Process Machines | |
Keywords: microactuator, thin-walled shell, large displacements, nonlinear deformation, optimization, synthesis of structures |
Currently, microelectromechanical systems are widely used in technology. An important component of these systems is a microactuator converting an external action into mechanical motion. To determine the parameters of microactuators, a new design technique needs to be developed. The paper proposes a method of determining the parameters of discrete microactuators converting pressure into a prescribed displacement. A mathematical model as well as a numerical algorithm for the analysis of large displacements of flexible thin-walled structural elements is described. The algorithm was implemented in the software package developed by the authors and incorporated into the ANSYS software using the optimization PSE/MACROS code. The results of numerical synthesis of an actual structure are presented. The proposed design technique has proven its efficiency and can be recommended for designing a wide range of microelectromechanical devices.
References
[1] Timoshenko S.P. Ustoichivost’ sterzhnei, plastin i obolochek [Stability of rods, plates and shells]. Moscow, Nauka publ., 1971. 808 p.
[2] Vorovich I.I. Matematicheskie problemy nelineinoi teorii pologikh obolochek [Mathematical problems of the nonlinear theory of shallow shells]. Moscow, Nauka publ., 1989. 376 p.
[3] Feodos’ev V.I. Osesimmetrichnaia elastika sfericheskoi obolochki [Axisymmetric elastic spherical shell]. Prikladnaia matematika i mekhanika [Journal of Applied Mathematics and Mechanics]. 1969, vol. 33, no. 2, pp. 280—286.
[4] Grigoliuk E.I. Tonkie bimetallicheskie obolochki i plastiny [Bimetallic thin shell and plate]. Inzhenernyi sbornik [Engineering collection]. 1953, vol. 17, pp. 69—120.
[5] Novozhilov V.V. Teoriia tonkikh obolochek [The theory of thin shells]. St. Petersburg, St. Petersburg University publ., 2010. 380 p.
[6] Reissner E. On axisymmetrical deformation of thin shells of revolution. Proc. Sympos. Appl. Math., 1950, vol. 3, 27–52.
[7] McMillan A.J., Keane A.J. Vibration isolation in a thin rectangular plate using a large number of optimally positioned. Journal of Sound and Vibration, 1997, vol. 202, no. 2, pp. 219—234.
[8] Bich, D.H., Tung, H.V. Non-l inear axisymmetric response of functionally graded shallow spherical shells under uniform external pressure including temperature effects. International Journal of Nonlinear Mechanics, 2011, vol. 46, no. 9, pp. 1195—1204.
[9] Li Q.S., Liu J., Tang J. Buckling of shallow spherical shells including the effects of transverse shear deformation. International Journal of Mechanical Sciences, 2003, vol. 45, no. 9, pp. 1519—1529.
[10] Petersen K.E. Si l icon as a mechanical material. Proceedings of the IEEE, 1982, vol. 70, no.5, pp. 420—457.
[11] Ştefãnescu D.M. Handbook of force transducers: principles and components. Berlin, Springer-Verlag, 2011. 612 p.
[12] Gavriushin S.S. Chiclennoe modelipovanie i analiz protsessov nelineinogo deformirovani ia gibkikh obolochek [Chiclennoe modelipovanie and analysis of the processes of nonlinear deformation of flexible shells]. Izvestiia Akademii nauk SSSR. Mekhanika tverdogo tela [Proceedings of the Academy of Sciences of the USSR. Mechanics of rigid body]. 1994, no. 1, pp. 109—119.
[13] Valishvili N.V. Metody rascheta obolochek vrashcheniia na ETsVM [Methods for calculating the shells of revolution on a computer]. Moscow, Mashinostroenie publ., 1976. 278 p.
[14] Arnol’d V.I. Teoriia katastrof [Catastrophe Theory]. Moscow, Nauka publ., 1990. 128 p.
[15] Grigoliuk E.I., Shalashilin V.I. Problemy nelineinogo deformirovaniia: Metod prodolzheniia po parametru v nelineinykh zadachakh mekhaniki tverdogo deformiruemogo tela [Problems of nonlinear deformation: continuation method in nonlinear problems of mechanics of deformable bodies]. Moscow, Nauka publ., 1988. 232 p.
[16] Bathe K.-J. Finite element procedures in engineering analysis. New Jersey, Prentice-Hall, 1996. 1050 p.
[17] Zienkiewicz O.C. The Finite Element Method. New York, MacGrow-Hill, 1977. 737 p.
[18] Lee J.J., Oh I.-K., Lee I., Rhiu J.J. Non-linear static and dynamic instability of complete spherical shells using mixed finite element formulat ion. Internat ional Journal of Nonlinear Mechanics, 2003, vol. 38, no. 6, pp. 923–934.
[19] Crisfield M.A. A Fast Incremental/Iterative Solution Procedure that Handles «Snap Through». Computer & Structures, 1981, vol. 13, pp. 55–62.
[20] Generic Tool for Optimization. Available at: http://www.datadvance. net/products/ technology/ generic-tool-for-optimization.html (accessed 11 November 2013).
[21] The Python Tutorial. Available at: http://docs.python.org/3/tutorial/index.html (accessed 11 November 2013).
[22] Sobol’ I.M. , Statnikov R.B. Vybor opt imal ’nykhparametrov v zadachakh so mnogimi kriteriiami [Choice of optimal parameters in problems with many criteria]. Moscow, Drofa publ., 2006. 175 p.