Theoretical Justification and Analysis of Technology for Manufacturing Waveguide-and-Distribution Systems of Spacecraft Communication Devices
Authors: Mikhnev M.M., Kudryavtsev I.V., Silchenko P.N. | Published: 02.07.2020 |
Published in issue: #6(723)/2020 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: spacecraft, waveguide-and-distribution system, technological methods of soldering, rigidity and accuracy parameters, soldering seam strength, mounting points |
Manufacturing of extended thin-walled waveguide-and-distribution system (WDS) by soldering separate elements is associated with force, strain and temperature impacts leading to undesirable deformations both in local areas as well as in the whole structure. Each element and the system in general are subjected to local thermal exposure that results in temperature stresses and strains. The stresses that occur due to heating can cause irreversible deformations of the structure manifested as local deflections and distortions of the cross section geometry. When assembling waveguide-and-distribution systems, even minor angular and linear displacements in the places where the elements are joined result in disruption of the overall geometry of the structure and therefore, a displacement of the mounting points relative to the desired location. Forced alignment of these points would create internal stresses, which combined with external impacts, could violate the conditions of strength, rigidity and location of the control mounting points. To achieve the required strength, rigidity and accuracy parameters of the system, it is necessary to perform a theoretical and calculation analysis of the manufacturing process parameters, steps, actions and methods. The paper presents a method of calculating waveguide-and-distribution systems that can be used to promptly determine the stress-strain state with a required accuracy in order to ensure strength, rigidity and sufficient geometrical accuracy of the WDS structure. The WDS is treated as a rod model in the global formulation and as a shell structure when a separate local area is analyzed in detail. This approach enables the assessment of the stress-strain state in general and more precise calculations of the stresses and strains in defined local areas with nearly any required accuracy. An example showing calculations of the dynamics of variation of the gap between thin-walled elements in the process of soldering is given. An analysis of the stress-strain state of the mounting soldered seam between the elements is performed. The results obtained using the proposed two-step calculation method provide the required quality throughout the whole process of manufacturing an extended waveguide-and-distribution system for a spacecraft.
References
[1] Gavryushin S.S., Baryshnikova O.O., Boriskin O.F. Chislennyy analiz elementov konstruktsiy mashin i priborov [Numerical analysis of structural elements of machines and devices]. Moscow, Bauman Press, 2014. 479 p.
[2] Bushminskiy I.P. Izgotovleniye elementov konstruktsiy SVCH [Production of microwave structural elements]. Moscow, Vysshaya shkola publ., 1974. 304 p.
[3] Sil’chenko P.N., Mikhnev M.M., Ankudinov A.V., Kudryavtsev I.V. Ensuring the strength and accuracy of large-size waveguide distribution systems of communication satellites. Journal of Machinery Manufacture and Reliability, 2012, vol. 41, no. 1, pp. 91–95, doi: 10.3103/S1052618811060173
[4] Novozhilov V.V., Chernykh K.F., Mikhaylovskiy E.I. Lineynaya teoriya tonkikh obolochek [Linear theory of thin shells]. Sankt-Petersburg, SPSTU publ., 2010. 380 p.
[5] Myachenkov V.I., Grigor’yev I.V. Raschet sostavnykh obolochechnykh konstruktsiy na EVM [Calculation of composite shell structures on a computer]. Moscow, Mashinostroyeniye publ., 1981. 216 p.
[6] Timoshenko S.P., Voynovskiy-Kriger S. Plastinki i obolochki [Plates and shells]. Moscow, URSS publ., 2009. 635 p.
[7] Polyanin A.D., Zaytsev V.F., Zhurov A.I. Metody resheniya nelineynykh uravneniy matematicheskoy fiziki i mekhaniki [Methods for solving nonlinear equations of mathematical physics and mechanics]. Moscow, Fizmatlit publ., 2005. 256 p.
[8] Polyanin A.D., Nazaikinskii V.E. Handbook of Linear Partial Differential Equations for Engineers and Scientists. CRC Press, Boca Raton–London, 2016. 1632 p.
[9] Solin P. Partial Differential Equations and the Finite Element Method. New Jersey, Wiley-Interscience, 2005. 504 p.
[10] Galanin M.P. Metody chislennogo analiza matematicheskikh modeley [Methods of numerical analysis of mathematical models]. Moscow, Bauman Press, 2012. 591 p.
[11] Bakushev S.V. Chislennyye metody mekhaniki deformiruyemogo tverdogo tela [Numerical methods of mechanics of a deformable solid]. Penza, PSUAS publ., 2015. 268 p.
[12] Slivker V.I. Stroitel’naya mekhanika [Structural mechanics]. Moscow, Assotsiatsiya stroitel’nykh vuzov publ., 2005. 736 p.
[13] Kudryavtsev I.V., Sil’chenko P.N., Mikhnev M.M., Gotselyuk O.B. Comparative Evaluation of Differential Equation Solutions in the Problem of Waveguide Straight Sections Bend in Communication Spacecraft. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2017, no. 1, pp. 4–23 (in Russ.), doi: 10.18698/0236-3941-2017-1-4-23
[14] Hartmann F., Katz C. Structural Analysis with Finite Elements. Berlin, Springer, 2004. 484 p.
[15] Ern A., Guermond J.L. Theory and Practice of Finite Elements (Applied Mathematical Sciences). Berlin, Springer, 2004. 526 p.
[16] Darkov A.V., Shaposhnikov N.N. Stroitel’naya mekhanika [Structural mechanics]. Sankt-Petersburg, Lan’ publ., 2005. 656 p.
[17] Testoyedov N.A., Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Khalimanovich V.I., Nagovitsin N.V., Gotselyuk O.B., Barykin E.S. Staticheskiy analiz prochnostnykh parametrov skladchatykh tonkostennykh obolochechnykh konstruktsiy volnovodov s zamknutym poperechnym secheniyem [Static analysis of the strength parameters of folded thin-walled cladding designs of waveguides with a closed cross section]. Svidetel’stvo o gosudarstvennoy registratsii programmy dlya EVM no. 2012661200, 2012.
[18] Testoyedov N.A., Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Khalimanovich V.I., Nagovitsin V.N., Sin’kovskiy F.K. Kvazistaticheskiy analiz skladchatykh tonkostennykh obolochechnykh konstruktsiy volnovodov [Quasistatic analysis of folded thin-walled cladding designs of waveguides]. Certificate of state registration of a computer program no. 2012661201, 2012.
[19] Testoyedov N.A., Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Khalimanovich V.I., Nagovitsin V.N. Modal’nyy analiz skladchatykh tonkostennykh obolochechnykh konstruktsiy volnovodov s zamknutym poperechnym secheniyem [Modal analysis of folded thin-walled cladding designs of waveguides with a closed cross section]. Certificate of state registration of a computer program no. 2012661204, 2012.
[20] Testoyedov N.A., Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Khalimanovich V.I., Nagovitsin V.N., Gotselyuk O.B. Analiz vynuzhdennykh kolebaniy skladchatykh tonkostennykh obolochechnykh konstruktsiy volnovodov s zamknutym poperechnym secheniyem [Analysis of forced vibrations of folded thin-walled cladding designs of waveguides with a closed cross section]. Certificate of state registration of a computer program no. 2012661199, 2012.
[21] Testoyedov N.A., Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Khalimanovich V.I., Sin’kovskiy F.K. Termouprugiy analiz pryamykh elementov skladchatykh tonkostennykh obolochechnykh konstruktsiy volnovodov s zamknutym poperechnym secheniyem [Thermoelastic analysis of the direct elements of folded thin-walled cladding designs of waveguides with a closed cross section]. Certificate of state registration of a computer program no. 2012661202, 2012.
[22] Testoyedov N.A., Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Khalimanovich V.I., Nagovitsin V.N., Sin’kovskiy F.K. Termouprugiy analiz krivolineynykh elementov skladchatykh tonkostennykh obolochechnykh konstruktsiy volnovodov s zamknutym poperechnym secheniyem [Thermoelastic analysis of curved elements of folded thin-walled cladding structures of waveguides with a closed cross section]. Svidetel’stvo o gosudarstvennoy registratsii programmy dlya EVM no. 2012661203, 2012.
[23] Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Nagovitsin V.N., Gotselyuk O.B. Modul’ eksporta lokal’nogo uchastka sterzhnevoy modeli skladchatykh tonkostennykh obolochechnykh konstruktsiy volnovodov s zamknutym poperechnym secheniyem v tverdotel’nuyu model’ Nastran [The module for exporting the local section of the core model of folded thin-walled cladding structures of closed-section waveguides into the Nastran solid-state model]. Certificate of state registration of a computer program no. 2012661197, 2012.
[24] Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Nagovitsin V.N., Gotselyuk O.B. Modul’ eksporta lokal’noy oblasti skladchatykh tonkostennykh obolochechnykh konstruktsiy volnovodov s zamknutym poperechnym secheniyem iz sterzhnevoy modeli v tverdotel’nuyu model’ Ansys [The module for exporting the local region of folded thin-walled cladding designs of waveguides with a closed cross section from the rod model to the Ansys solid-state model]. Certificate of state registration of a computer program no. 2012661198, 2012.
[25] Vorob’yev E.A. Raschet proizvodstvennykh dopuskov ustroystv SVCH [Calculation of manufacturing tolerances for microwave devices]. Leningrad, Sudostroyeniye publ., 1980. 148 p.
[26] Sil’chenko P.N., Kudryavtsev I.V., Ivanov V.I., Mikhnev M.M., Gusev V.Yu. Maintenance of the technology of block assemblage with soldering of large-sized waveguide-distribution systems of space vehicles. Reshetnevskiye chteniya, posvyashchennyye pamyati gen. konstruktora raket.-kosmich. sistem akad. M.F. Reshetneva. Mater. XIV mezhdunar. nauch. konf. [Reshetnev readings dedicated to the memory of the general designer of space rocket systems academician M.F. Reshetneva. Materials of the XIV International Scientific Conference]. Krasnoyarsk, SIBSAU publ., 2010, pt. 1, pp. 71–73.
[27] GOST RV 20.57.305–98. Kompleksnaya sistema kontrolya kachestva. Apparatura, pribory, ustroystva i oborudovaniye voyennogo naznacheniya. Metody ispytaniy na vozdeystviye mekhanicheskikh faktorov [State Standard RV 20.57.305–98. Integrated quality control system. Apparatus, instruments, devices and equipment for military use. Mechanical Test Methods]. Moscow, Standartinform publ., 2001. 54 p.