A Study of Electroerosive Machinability of Heat-Resistant Alloys in Relation to the Technology of Piercing Small Diameter Holes
Authors: Kushnarenko S.B., Astakhov Y.P., Fomichev A.O. | Published: 15.09.2020 |
Published in issue: #9(726)/2020 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: machinability of materials, erosion coefficient, electroerosion hole, electrode-tool, electroerosion processing, rocket and space technology |
This article presents a method of obtaining and analyzing a single electroerosion hole for a group of heat-resistant chromium-nickel alloys. The study of the geometric parameters of the hole allows us to calculate experimentally the coefficient of erosion of the workpiece material, which characterizes the efficiency of converting the electrical energy into the fracture work of a solid body. When a single erosion pulse is applied to the interelectrode gap, a single hole is formed on the electrode surface. The geometric parameters of the hole (diameter, depth, height of the collar) depend on many factors: the pulse energy, the composition of the working fluid, the material of the electrodes, the value of the interelectrode gap, etc. This study establishes the dependence of the volume of the removed material on the pulse energy, with other conditions being equal. Experimental studies are conducted in accordance with a well-known method, and photographs of individual holes are obtained for different pulse durations. Ball segment and ellipsoid models are proposed for calculating the volume of the removed metal. It is shown that the ball segment model yields the smallest calculation error. The volume of individual holes is calculated using the selected ball segment model.
References
[1] Saushkin B.P., Eliseyev Yu.S. Elektroerozionnaya obrabotka izdeliy aviatsionno-kosmicheskoy tekhniki [Electroerosive processing of aerospace equipment]. Moscow, Bauman Press, 2010. 437 p.
[2] Elektrokhimicheskaya obrabotka izdeliy aviatsionno-kosmicheskoy tekhniki [Electrochemical processing of aerospace equipment]. Ed. Saushkin B.P. Moscow, Forum publ., 2013. 480 p.
[3] Mitryushin E.A., Morgunov Yu.A, Saushkin B.P. Unified stamp manufacturing techniques using electrophysical processing methods. Metalloobrabotka, 2010, no. 2(56), pp. 42–45 (in Russ.).
[4] Morgunov Yu.A., Saushkin G.B. Electrochemical marking of the parts from aircraft materials. Strengthening technologies and coatings, 2009, no. 12, pp. 45–50 (in Russ.).
[5] Morgunov Yu.A, Saushkin B.P., Shandrov B.V. Development of the conceptual background of machine-building technology. Handbook. An Engineering journal with appendix, 2016, no. 4(229), pp. 3–7 (in Russ.), doi: 10.14489/hb.2016.04.pp.003-007
[6] Pozdeyev I.A., Fomichev O.A., Saushkin B.P. Utochneniye koeffitsiyentov erozii zharoprochnykh splavov Refinement of the erosion coefficients of heat-resistant alloys. XXX Mezhdunar. innovatsionnaya konf. molodykh uchenykh i studentov [XXX International Innovation Conference of Young Scientists and Students]. Moscow, 2019, pp. 648–650.
[7] Stavitskiy B.I. Iz istorii razvitiya elektroiskrovoy obrabotki materialov [From the history of the development of electrospark processing of materials]. Khar’kov, CHF «Tsentrinform» publ., 2013. 104 p.
[8] Zolotykh B.N., Mel’der R.R. Fizicheskiye osnovy elektroerozionnoy obrabotki [Physical fundamentals of EDM]. Moscow, Mashinostroyeniye publ., 1977. 43 p.
[9] Morgunov Yu.A., Panov D.V., Saushkin B.P., Saushkin S.B. Naukoyemkiye tekhnologii mashinostroitel’nogo proizvodstva. Fiziko-khimicheskiye metody i tekhnologii [High technology engineering production. Physicochemical Methods and Technologies]. Moscow, Forum publ., 2013. 928 p.
[10] Gruzdev A.A. Povysheniye proizvoditel’nosti operatsiy elektroerozionnoy proshivki otverstiy malogo diametra putem nalozheniya ul’trazvukovogo polya. Kand. Diss. [Improving the productivity of operations of electroerosive firmware of small-diameter holes by applying an ultrasonic field. Cand. Diss.]. Moscow, 2018. 207 p.
[11] Fiziko-khimicheskiye metody i tekhnologii obrabotki [Physico-chemical methods and processing technologies]. Ed. Shandrov B.V. Moscow, Moskovskiy Politekh publ., 2018. 102 p.
[12] Zabel’yan D.M., Rogov V.V., Mitryushin E.A., Morgunov Yu.A., Saushkin B.P. High-speed electrical discharge machining of grooves in the combustion tube cooling system of the combustion chamber. Metalloobrabotka, 2012, no. 3(69), pp. 14–19 (in Russ.).
[13] Zolotykh B.N. Osnovnyye voprosy teorii elektricheskoy erozii v impul’snom razryade v zhidkoy dielektricheskoy srede. Dokt. Diss. [The main questions of the theory of electrical erosion in a pulsed discharge in a liquid dielectric medium. Doct. Diss.]. Moscow, 1968. 581 p.
[14] Stavitskiy I.B. Razrabotka metodov povysheniya proizvoditel’nosti elek-troerozionnoy proshivki pretsizionnykh glubokikh otverstiy. Kand. Diss. [Development of methods for improving the performance of electroerosive piercing of precision deep holes. Cand. Diss.]. Moscow, 1994. 256 p.
[15] Gruzdev A.A, Morgunov Yu.A., Saushkin B.P. Peculiarities of electro-erosion machining with discharge low-energy pulses. Science intensive technologies in mechanical engineering, 2017, no. 9(75), pp. 17–20, doi: 10.12737/article_59ae90c63c66d6.60177261