Analysis of the Main Methods of Obtaining Propellant by Electrolysis of Water
Authors: Shalashov M.A., Peshkov R.A. | Published: 07.03.2022 |
Published in issue: #3(744)/2022 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: oxygen-hydrogen propulsion system, onboard electrolysis unit, small spacecraft |
The article presents a review of onboard electrolysis plants being the part of the spacecraft propulsion systems and designed for obtaining propellant components from water. The technical level of development on on-board electrolysis plants was studied. The analysis of tendencies and the forecast of development of onboard electrolysis plants were carried out. The possibility of their use as a part of space vehicles is assessed.
References
[1] Lemeshevskiy S.A., Grafodatskiy O.S., Shirshakov A.E. et al. Space transport systems for industrial and scientific development of small celestial bodies. Vestnik NPO im. S.A. Lavochkina, 2018, no. 2, pp. 47–55. (In Russ.).
[2] Grogan P., Armar N., Siddiqi A. et al. A flexible architecture and object-oriented model for space logistics simulation. AIAA Space Conf. Exposition, 2009, doi: https://doi.org/10.2514/6.2009-6548
[3] Merrill R.G. An integrated hybrid transportation architecture for human Mars expeditions. AIAA SPACE Conf. Exposition, 2015, doi: https://doi.org/10.2514/6.2015-4442
[4] Jones C.A., Merrill R.G., McVay E. Cis-lunar reusable in-space transportation architecture for the evolvable mars campaign. AIAA SPACE, 2016, doi: https://doi.org/10.2514/6.2016-5493
[5] Litvak M.L., Sanin A.B. Water in the solar system. Phys.-Usp., 2018, vol. 61, no. 8, pp. 779–792, doi: https://doi.org/10.3367/UFNe.2017.04.038277
[6] Shalashov M., Fedorov V., Vaulin S. Concept of application of water electrolysis propulsion system as a component of a universal space platform for asteroid exploration mission. AS, 2021, doi: https://doi.org/10.1007/s42401-021-00110-0
[7] Rosenberg S.D., Judd D.C., Garrison P.W. Integratable propulsion systems for the Space Station. J. Propuls. Power, 1985, vol. 1, no. 1, pp. 65–69, doi: https://doi.org/10.2514/3.22760
[8] Sovey J., Tacina R., Morren J.W. et al. Space station propulsion. JANNAF Propulsion Conf., 1987. URL: https://ntrs.nasa.gov/citations/19880002364
[9] de Groot W., Arrington L., McElroy J. et al. Electrolysis propulsion for spacecraft applications. 33rd Joint Propulsion Conf. Exhibit, 1997, doi: https://doi.org/10.2514/6.1997-2948
[10] Podobedov G.G., Smolentsev A.A., Smolyarov V.A. et al. Solar water propulsion and power generating system. Izvestiya RAN. Energetika [Proceedings of the Russian Academy of Sciences. Power Engineering], 2013, no. 1, pp. 57–67. (In Russ.).
[11] Terent’yev I.P., Tumanin E.N., Shcherbakov A.N. Elektrolizer vody i sposob ego ekspluatatsii [Water electrolyser and operation method thereof]. Patent RU 2647841. Appl. 11.08.2016, publ. 21.03.2018. (In Russ.).
[12] Korolev S.P., Kuleshov V.N., Kuleshov N.V. et al. High pressure water elektrolyzer for ungravity space. Izvestiya RAN. Energetika [Proceedings of the Russian Academy of Sciences. Power Engineering], 2019, no. 2, pp. 68–77, doi; https://doi.org/10.1134/S0002331019020092 (in Russ.).
[13] Ivanchev S.S. Polymer membranes for fuel cells: manufacture, structure, modification, properties. Uspekhi khimii, 2010, vol. 79, no. 2, pp. 117–134. (In Russ.). (Eng. version: Russ. Chem. Rev., 2010, vol. 79, no. 2, pp. 101–117, doi: https://doi.org/10.1070/RC2010v079n02ABEH004070)
[14] Doyle K., Peck M.A., Jones L.L. Spinning CubeSats with liquid propellant. AIAA Guidance, Navigation, Control Conf., 2016, doi: https://doi.org/10.2514/6.2016-1369
[15] Glukhikh I.N., Lopota V.A., Sokolov B.A. et al. Plants with electrolyzers of high pressure water. Al’ternativnaya energetika i ekologiya [Alternative Energy and Ecology], 2007, no. 11, pp. 73–79. (In Russ.).
[16] Glukhikh I.N. Bortovaya elektroliznaya ustanovka kosmicheskogo apparata [Spacecraft onboard electrolysis unit]. Patent RU 2525350. Appl. 11.12.2012, publ. 10.08.2014. (In Russ.).
[17] Glukhikh I.N., Chelyaev V.F., Shcherbakov A.N. High pressure hydrogen accumulator with PEM water electrolyzer. Izvestiya RAN. Energetika [Proceedings of the Russian Academy of Sciences. Power Engineering], 2012, no. 2, pp. 111–119. (In Russ.).
[18] Glukhikh I.N., Starostin A.N., Shcherbakov A.N. Development of a high pressure hydrogen accumulator with pem electrolyzer for renewable energy sources. Izvestiya RAN. Energetika [Proceedings of the Russian Academy of Sciences. Power Engineering], 2013, no. 4, pp. 124–132. (In Russ.).
[19] Glukhikh I.N., Fedorova Yu.M. Elektroliznaya ustanovka kosmicheskogo naznacheniya i sposob ee ekspluatatsii [Electrolyzer for space application and method of its exploitation]. Patent RU 2543048. Appl. 21.06.2013, publ. 27.02.2015. (In Russ.).
[20] Lenoida A. Hydrogen/oxygen SPE electrochemical devices for zero-g applications. European Space Power Conf., 1989, vol. 294, no. 1, p. 227.
[21] Guo Q. Gas/water and heat management of PEM-based fuel cell and electrolyzer systems for space applications. Microgravity Sci. Technol., 2017, vol. 29, no. 1–2, pp. 49–63, doi: https://doi.org/10.1007/s12217-016-9525-6
[22] Matsushima H. Water electrolysis under microgravity (Part II). Electrochim. Acta, 2003, vol. 48, no. 28 (48), pp. 4119–4125, doi; https://doi.org/10.1016/S0013-4686(03)00579-6
[23] Sakurai M., Sone Y., Nishida T. et al. Fundamental study of water electrolysis for life support system in space. Electrochim. Acta, 2013, vol. 100, pp. 3510–357, doi: https://doi.org/10.1016/j.electacta.2012.11.112
[24] Papale W., Roy R. A water-based propulsion system for advanced spacecraft. Space Forum, 2006, doi: https://doi.org/10.2514/6.2006-7240
[25] Harmansa N.-E. Development of a satellite propulsion system based on water electrolysis. Int. J. Energetic Mater. Chem. Propuls., 2019, vol. 18, no. 3, pp. 185–199, doi: https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2019028538