Study of combustion processes using a bench on board the International Space Station
Authors: Pichugin S.B. | Published: 14.11.2024 |
Published in issue: #11(776)/2024 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: liquids and gases combustion, combustion processes, research bench, International Space Station |
The paper considers a bench on board the International Space Station in studying combustion processes, its design features, and results of experiments and target work conducted on it and related to analyzing combustion processes in zero gravity and microgravity. It presents results of a research, where liquid, gaseous, and solid fuels combustion was studied. Roscosmos cosmonauts and Russian research institutions participated in the research. The paper shows capabilities of the bench in providing the automated research process maintaining control over the atmosphere composition, pressure and other parameters in the experimental chamber, as well as those of the measurement and registration equipment. Advantages and disadvantages revealed during the bench operation on board the Station are identified. Ways to improve the research technical base are outlined. The paper notes efforts of the Russian crew and Russian scientists in ensuring research within the framework of the joint Russian-American scientific program.
EDN: KCPNBR, https://elibrary/kcpnbr
References
[1] Novitskiy O.V., Peklevskiy A.V., Pichugin S.B. et al. [Joint experiment "Zarevo" and equipmentof international space station for its implementation]. Mat. XII mezhd. nauch.-prakt. konf. Pilotiruemye polety v kosmos [Proc. XII Int. Sci.-Pract. Conf. Manned space flights]. Zvezdnyy gorodok, Izd-vo TsPK im. Yu.A. Gagarina Publ., 2017, pp. 85–87. (In Russ.).
[2] Pichugin S.B., Artemyev O.G., Prokopyev S.V. et al. [Experiments on ISS on combustion of gas mixtures. Some results and technical experience gained]. Nekotorye rezultaty i narabotannyy tekhnicheskiy opyt. Mat. XII mezhd. nauch.-prakt. konf. Pilotiruemye polety v kosmos [Proc. XII Int. Sci.-Pract. Conf. Manned space flights]. Zvezdnyy gorodok, Izd-vo TsPK Publ., 2019, pp. 152–54. (In Russ.).
[3] Pichugin S.B., Samsonov D.S., Frolov S.M. et al. [Experiments with flames onboard the ISS]. Mat. otraslevoy nauch.-prakt. konf. Kosmonavtika XXI veka [Proc. Industry Sci.-Pract. Conf. Cosmonautics of the XXI Century]. Korolev, Izd-vo TsNIIMASh Publ., 2021, pp. 219–221(In Russ.).
[4] Pichugin S.B. [Studies of combustion processes on the international space station stand]. Mat. Vseros. nauch.-tekh. konf. Raketno-kosmicheskie dvigatelnye ustanovki [Proc. Russ. Sci.-Tech. Conf. Rocket and Space Propulsion Installations]. Moscow, Bauman MSTU Publ., 2023, pp. 79–80. (In Russ.).
[5] Markan A., Sunderland P.B., Quintiere J.G. et al. Measuring heat flux to a porous burner in microgravity. Proc. Combust. Inst., 2019, vol. 37, no. 3, pp. 4137–4144, doi: https://doi.org/10.1016/j.proci.2018.05.006
[6] Quintiere J.G., Hees P., Vermina Plathner F. Analysis of extinction and sustained ignition. Fire Saf. J., 2019, 105, pp. 51–61, doi: https://doi.org/10.1016/j.firesaf.2019.02.003
[7] Markan A., Baum H.R., Sunderland P.B. et al. Transient ellipsoidal combustion model for a porous burner in microgravity. Combust. Flame, 2020, 212, pp. 93–106, doi: https://doi.org/10.1016/j.combustflame.2019.09.030
[8] Chien Y.-C., Escofet-Martin D., Dunn-Rankin D. Ion current and carbon monoxide release from an impinging methane/air coflow flame in an electric field. Combust. Flame, 2019, vol. 204, pp. 250–259, doi: https://doi.org/10.1016/j.combustflame.2019.03.022
[9] Wang Z., Sunderland P.B., Axelbaum R.L. Dilution effects on laminar jet diffusion flame lengths. Proc. Combust. Inst., 2019, vol. 37, no. 2, pp. 1547–1553, doi: https://doi.org/10.1016/j.proci.2018.06.085
[10] Wang Z., Sunderland P.B., Axelbaum R.L. Double blue zones in inverse and normal laminar jet diffusion flames. Combust. Flame, 2020, vol. 211, pp. 253–259, doi: https://doi.org/10.1016/j.combustflame.2019.09.014
[11] Liang W., Law C.K. Generalized description and extrapolation of extinction stretch rates from spherically expanding flames. Proceedings of the Combustion Institute, vol. 39(2), pp. 2047–2054, https://doi.org/10.1016/j.proci.2022.08.134
[12] Wenkai Liang, Chung K. Law. On radical-induced ignition in combustion systems. Annu. Rev. Chem. Biomol. Eng., 2019, vol. 10, pp. 199–217, doi: https://doi.org/10.1146/annurev-chembioeng-060718-030141
[13] Snegirev A., Kuznetsov E., Markus E. et al. Transient dynamics of radiative extinction in low-momentum microgravity diffusion flames. Proc. Combust. Inst., 2021, vol. 38, no. 3, pp. 4815–4823, doi: https://doi.org/10.1016/j.proci.2020.06.110
[14] Kempema N.J., Dobbins R.R., Long M.B. et al. Constrained-temperature solutions of coflow laminar diffusion flames. Proc. Combust. Inst., 2021, vol. 38, no. 2, pp. 1905–1912, doi: https://doi.org/10.1016/j.proci.2020.06.034
[15] Irace P.H., Lee H.J., Waddell K. et al. Observations of long duration microgravity spherical diffusion flames aboard the international space station. Combust. Flame, 2021, vol. 229, art. 111373, https://doi.org/10.1016/j.combustflame.2021.02.019