Rheological aspects in thermo-pressing the products made of consolidated plates based on the thermosetting binders
Authors: Gabdrakhmanova G.M., Khamidullin O.L., Andrianova K.A., Amirova L.M. | Published: 10.01.2025 |
Published in issue: #1(778)/2025 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: consolidated plates, thermosetting powder binders, plate thermo-pressing, functionally gradient carbon fiber, rheological properties |
Thermo-pressing the consolidated plates appears to be one of the promising technological processes in manufacture of products from the polymer composite materials. Hot pressing makes it possible to automate production of the small-sized composite products, which is especially important in the large-scale production. The paper considers the hot pressing technology of the consolidated plates based on the carbon fabric and powder binders. The thermo-pressing technological modes are optimized based on ensuring the binder viscosity in the range of 75 ... 350 Pa?s. The paper provides possible approaches to regulating viscosity of the thermosetting powder binders filled with a dispersed filler and modified with the thermoplastic. Viscosity of the unfilled thermosetting powder binders is regulated using the rheokinetic studies on the example of the epoxy-benzoxazine compositions. The paper proposes the powder binder compositions to obtain composite materials with the matrix homogeneous and functionally gradient composition over the product cross-section. It analyzes main problems in pressing the consolidated plates with the binder composition gradient and proposes approaches to their solution.
EDN: EZUSWQ, https://elibrary/ezuswq
References
[1] Lunetto V., Galati M., Settineri L. et al. Sustainability in the manufacturing of composite materials: a literature review and directions for future research. J. Manuf. Process., 2023, vol. 85, pp. 858–874, doi: https://doi.org/10.1016/j.jmapro.2022.12.020
[2] Yadav N., Schledjewski R. Review of in-process defect monitoring for automated tape laying. Compos. Part A Appl. Sci. Manuf., 2023, art. 107654, doi: https://doi.org/10.1016/j.compositesa.2023.107654
[3] Sherwood J.A., Fetfatsidis K.A., Gorczyca J.L. et al. Fabric thermostamping in polymer matrix composites. In: Manufacturing techniques for polymer matrix composites (PMCs). Woodhead Publ., 2012, pp. 139–181, doi: https://doi.org/10.1533/9780857096258.2.139
[4] Brooks R.A., Wang H., Ding Z. et al. A review on stamp forming of continuous fibre-reinforced thermoplastics. Int. J. Lightweight Mater. Manuf., 2022, vol. 5, no. 3, pp. 411–430, doi: https://doi.org/10.1016/j.ijlmm.2022.05.001
[5] Chen H., Li S., Wang J. et al. A focused review on the thermo-stamping process and simulation progresses of continuous fibre reinforced thermoplastic composites. Compos. B. Eng., 2021, vol. 224, art. 109196, doi: https://doi.org/10.1016/j.compositesb.2021.109196
[6] Gong Y., Song Z., Ning H. et al. A comprehensive review of characterization and simulation methods for thermo-stamping of 2D woven fabric reinforced thermoplastics. Compos. B. Eng., 2020, vol. 203, art. 108462, doi: https://doi.org/10.1016/j.compositesb.2020.108462
[7] Solovyev R.I., Balkaev D.A., Amirova L.M. Thermoforming of products from consolidated sheet blanks based on the polypropylene reinforced by the fiberglass. Izvestiya vuzov. Aviatsionnaya tekhnika, 2024, no. 1, pp. 164–171. EDN: KORRDN (in Russ.).
[8] Solovyev R.I., Amirova L.M. et al. Determination of the shaping behavior of thermoplastic composite materials required for simulation of thermoforming. Zavodskaya laboratoriya. Diagnostika materialov [Industrial laboratory. Diagnostics of materials], 2023, vol. 89, no. 7, pp. 61–70, doi: https://doi.org/10.26896/1028-6861-2023-89-7-61-70 (in Russ.).
[9] Amirov R.R., Antipin I.S., Balkaev D.A. et al. Ugleplastik na osnove polifenilensulfidnogo svyazuyushchego i sposob ego polucheniya (varianty) [Carbon fibre-reinforced plastic based on polyphenylene sulphide binder and method for production thereof (versions)]. Patent RU 2816084. Appl. 15.09.2023, publ. 26.03.2024. (In Russ.).
[10] Yanagimoto J., Ikeuchi K. Sheet forming process of carbon fiber reinforced plastics for lightweight parts. CIRP Annals, 2012, vol. 61, no. 1, pp. 247–250, doi: https://doi.org/10.1016/j.cirp.2012.03.129
[11] Uriya Y., Yanagimoto J. Suitable structure of thermosetting CFRP sheet for cold/warm forming. Int. J. Mater. Form., 2016, vol. 9, pp. 243–252, doi: https://doi.org/10.1007/s12289-015-1227-x
[12] Uriya Y., Yanagimoto J. Erichsen cupping test on thermosetting CFRP sheets. Int. J. Mater. Form., 2017, vol. 10, pp. 527–534, doi: https://doi.org/10.1007/s12289-016-1298-3
[13] Nishino A., Oya T. Multiscale analysis of the formability of CFRP sheets subjected to warm forming with a temperature-dependent epoxy model. Int. J. Mater. Form., 2019, vol. 12, pp. 793–800, doi: https://doi.org/10.1007/s12289-018-1449-9
[14] Oya T., Nishino A. Formability mechanism of CFRP sheets using multiscale model based on microscopic characteristics of thermosetting resin. Multiscale and Multidiscip. Model. Exp. and Des., 2021, vol. 4, no. 2, pp. 65–76, doi: https://doi.org/10.1007/s41939-020-00082-2
[15] Melnikov D.A., Khaskov M.A., Guseva M.A. et al. To the question of the development of pressing mode for laminated PCMs based on prepreg. Trudy VIAM [Proceedings of VIAM], 2018, no. 2, doi: https://doi.org/10.18577/2307-6046-2018-0-2-9-9 (in Russ.).
[16] Hallander P., Sjölander J., Petersson M. et al. Fast forming of multistacked UD prepreg using a high pressure process. Polym. Compos., 2019, vol. 40, no. 9, pp. 3550–3561, doi: https://doi.org/10.1002/pc.25217
[17] Janzen J.P., May D. Solid epoxy prepregs with patterned resin distribution: Influence of pattern and process parameters on part quality in vacuum?bag?only processing. Polym. Compos., 2023, vol. 44, no. 11, pp. 8153–8167, doi: https://doi.org/10.1002/pc.27696
[18] Amirova L.M., Antipin I.S., Balkaev D.A. et al. Sposob polucheniya armirovannogo uglekompozita na osnove poroshkovogo svyazuyushchego, soderzhashchego tverduyu epoksidnuyu smolu i bifunktsionalnyy benzoksazin (varianty) [Method for producing reinforced carbon composite based on powder binder containing solid epoxy resin and bifunctional benzoxazine (embodiments)]. Patent RU 2813113. Appl. 07.06.2023, publ. 06.02.2024. (In Russ.).
[19] Khamidullin O.L., Madiyarova G.M., Amirova L.M. et al. Poroshkovoe svyazuyushchee na osnove tsianovoy kompozitsii i sposob polucheniya armirovannogo uglekompozita na ego osnove (varianty) [Powder binder based on cyanic composition and method of producing reinforced carbon composite based thereon (versions)]. Patent RU 2813882. Appl. 23.08.2023, publ. 19.02.2024. (In Russ.).
[20] Khamidullin O.L., Madiyarova G.M., Amirova L.M. et al. Tokoprovodyashchee poroshkovoe svyazuyushchee na osnove epoksidnoy kompozitsii i sposob polucheniya preprega i armirovannogo uglekompozita na ego osnove (varianty) [Current-conducting powder binder based on epoxy composition and method of producing prepreg and reinforced carbon composite based on it (versions)]. Patent RU 2820925. Appl. 07.08.2023, publ.11.06.2024. (In Russ.).
[21] Rashidi A., Montazerian H., Milani A.S. Slip-bias extension test: a characterization tool for understanding and modeling the effect of clamping conditions in forming of woven fabrics. Compos. Struct., 2021, vol. 260, art. 113529, doi: https://doi.org/10.1016/j.compstruct.2020.113529
[22] Qi J., Li L., Wang Y. et al. A mechanics analysis of carbon fiber plain-woven thermoset prepreg during forming process considering temperature effect. Polymers, 2022, vol. 14, no. 13, art. 2618, doi: https://doi.org/10.3390/polym14132618
[23] Khan M.A., Pasco C., Reynolds N. et al. On the validity of bias-extension test method for the characterisation of in-plane shear properties of rapid-cure prepregs. Compos. Struct., 2020, vol. 246, art. 112399, doi: https://doi.org/10.1016/j.compstruct.2020.112399
[24] Le A., Nimbalkar S., Zobeiry N. et al. An efficient multi-scale approach for viscoelastic analysis of woven composites under bending. Compos. Struct., 2022, vol. 292, art. 115698, doi: https://doi.org/10.1016/j.compstruct.2022.115698
[25] Ten Thije R.H.W. et al. A lubrication approach to friction in thermoplastic composites forming processes. Compos. Part A Appl. Sci. Manuf., 2011, vol. 42, no. 8, pp. 950–960, doi: https://doi.org/10.1016/j.compositesa.2011.03.023
[26] Erland S., Dodwell T.J., Butler R. Characterisation of inter-ply shear in uncured carbon fibre prepreg. Compos. Part A Appl. Sci. Manuf., 2015, vol. 77, pp. 210–218, doi: https://doi.org/10.1016/j.compositesa.2015.07.008
[27] Rashidi A. et al. Experimental characterization of the inter-ply shear behavior of dry and prepreg woven fabrics: significance of mixed lubrication mode during thermoset composites processing. Compos. Part A Appl. Sci. Manuf., 2020, vol. 129, art. 105725, doi: https://doi.org/10.1016/j.compositesa.2019.105725
[28] Osterberger J., Maier F., Hinterhölzl R.M. Application of the abaqus fabric model to approximate the draping behavior of UD prepregs based on suited mechanical characterization. Front. Mater., 2022, vol. 9, art. 865477, doi: https://doi.org/10.3389/fmats.2022.865477
[29] Bai R., Chen B., Colmars J. et al. Physics-based evaluation of the drapability of textile composite reinforcements. Compos. B. Eng., 2022, vol. 242, art. 110089, doi: https://doi.org/10.1016/j.compositesb.2022.110089
[30] Rashidi A., Crawford B., Olfatbakhsh T. et al. A mixed lubrication model for inter-ply friction behaviour of uncured fabric prepregs. Compos. Part A Appl. Sci. Manuf., 2021, vol. 149, art. 106571, doi: https://doi.org/10.1016/j.compositesa.2021.106571
[31] Yuan H., Khan M., Qian C. et al. Experimental and numerical investigation of the intra-ply shear behaviour of unidirectional prepreg forming through picture-frame test. Compos. B. Eng., 2023, vol. 266, art. 111036, doi: https://doi.org/10.1016/j.compositesb.2023.111036
[32] Martin C.J., Seferis J.C., Wilhelm M.A. Frictional resistance of thermoset prepregs and its influence on honeycomb composite processing. Compos. Part A Appl. Sci. Manuf., 1996, vol. 27, no. 10, pp. 943–951, doi: https://doi.org/10.1016/1359-835X(96)00037-1
[33] Rashidi A., Keegan C., Milani A.S. Analysis of inter-ply friction in consolidation process of thermoset woven prepregs. AIP Conf. Proc., 2019, vol. 2113, no. 1, art. 020023, doi: https://doi.org/10.1063/1.5112528
[34] Kruse M., Werner H.O., Chen H. et al. Investigation of the friction behavior between dry/infiltrated glass fiber fabric and metal sheet during deep drawing of fiber metal laminates. Prod. Eng. Res. Devel., 2023, vol. 17, no. 1, pp. 37–46, doi: https://doi.org/10.1007/s11740-022-01141-y
[35] Ghatage P.S., Kar V.R., Sudhagar P.E. On the numerical modelling and analysis of multi-directional functionally graded composite structures: a review. Compos. Struct., 2020, vol. 236, art. 111837, doi: https://doi.org/10.1016/j.compstruct.2019.111837
[36] Sidorov I.N., Andrianova K., Gaifutdinov A. et al. Modeling and experimental investigations of mechanical properties of hybrid composite rods with gradient composition. Mater. Today Commun., 2024, vol. 39, art. 108738, doi: https://dx.doi.org/10.2139/ssrn.4740647
[37] Andrianova K.A., Khalikov A.A., Bezzametnov O.N. et al. Functional-gradient carbon fiber-reinforced plastic based on epoxy matrix modified with thermoplastic elastoplast. Voprosy materialovedeniya, 2023, no. 3, pp. 170–177, doi: https://doi.org/10.22349/1994-6716-2023-115-3-170-177 (in Russ.).
[38] Zhang J., Taylor T., Shukla L. et al. Rapid fabrication of 3D CFRP parts by hot forming of pre-cured CFRP sheets. Compos. Struct., 2021, vol. 268, art. 113942, doi: https://doi.org/10.1016/j.compstruct.2021.113942
[39] Halley P.J., Mackay M.E. Chemorheology of thermosets — an overview. Polym. Eng. Sci., 1996, vol. 36, no. 5, pp. 593–609, doi: https://doi.org/10.1002/pen.10447
[40] Domínguez J.C. Rheology and curing process of thermosets. In: Thermosets. Elsevier, 2018, pp. 115–146, doi: https://doi.org/10.1016/B978-0-08-101021-1.00004-6
[41] Müller-Pabel M., Agudo J.A.R., Gude M. Measuring and understanding cure-dependent viscoelastic properties of epoxy resin: a review. Polym. Test., 2022, vol. 114, art. 107701, doi: https://doi.org/10.1016/j.polymertesting.2022.107701
[42] Malkin A.Y., Kulichikhin S.G. Rheokinetics. Wiley, 2008. 236 p.
[43] Vyazovkin S., Achilias D., Fernandez-Francos X. et al. ICTAC Kinetics Committee recommendations for analysis of thermal polymerization kinetics. Thermochim. Acta, 2022, vol. 714, art. 179243, doi: https://doi.org/10.1016/j.tca.2022.179243
[44] Dittrich B., Wartig K-A., Mülhaupt R. et al. Flame-retardancy properties of intumes-cent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers, 2014, vol. 6, no. 11, pp. 2875–2895, doi: https://doi.org/10.3390/polym6112875
[45] Domínguez J.C., Alonso M.V., Oliet M. et al. Chemorheological study of the curing kinetics of a phenolic resol resin gelled. Eur. Polym. J., 2010, vol. 46, no. 1, pp. 50–57, doi: https://doi.org/10.1016/j.eurpolymj.2009.09.004
[46] Peng W., Riedl B. The chemorheology of phenol-formaldehyde thermoset resin and mixtures of the resin with lignin fillers. Polymer, 1994, vol. 35, no. 6, pp. 1280–1286, doi: https://doi.org/10.1016/0032-3861(94)90024-8
[47] Domínguez J.C., Oliet M., Alonso M.V. et al. Rheokinetic of a gelled resol resin curing by dynamic temperature rheometry based on rectangular torsion strain. J. Appl. Polym. Sci., 2012, vol. 124, no. 6, pp. 5122–5129, doi: https://doi.org/10.1002/app.35663
[48] Yang Z., Peng H., Wang W. et al. Crystallization behavior of poly(?-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci., 2010, vol. 116, no. 5, pp. 2658–2667, doi: https://doi.org/10.1002/app.31787
[49] Roller M.B. Rheology of curing thermosets: a review. Polym. Eng. Sci., 1986, vol. 26, no. 6, pp. 432–440, doi: https://doi.org/10.1002/pen.760260610