On the problem of a spacecraft maneuverability
Authors: Fedyanin V.V., Shalai V.V. | Published: 16.04.2025 |
Published in issue: #4(781)/2025 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: orientation alteration, spacecraft position, space debris, ion engine, plasma engine |
The paper considers a problem of the spacecraft maneuverability. It compiles a mathematical model of the celestial body and a model of the spacecraft in the Earth’s gravitational field. Six types of alteration in the spacecraft position in orbit are created making it possible to adjust its position in the different planes. Based on the compiled model, the paper develops an algorithm and a program to simulate the motion of bodies. Using the program makes it possible to study four types of maneuvers including the two-impulse, three-impulse, orbit inclination alteration and an increase in orbit altitude. The orbit altitude is increased using a low-power ion engine. The engine characteristics have the following parameters: thrust — 0.001 N, mass flow rate — 52?10–9 kg/s. Computation expressions are given, and the diagrams of the spacecraft flight trajectories are constructed for these maneuvers. The developed program makes it possible to analyze flight trajectories when using the low-power engines.
EDN: GOSXQN, https://elibrary/gosxqn
References
[1] Glushkov A.V., Ulybyshev S.Yu. Application of the clock mode to the propulsion system for a spacecraft high-precision orbital maneuvering and reorientation. Trudy MAI, 2018, no. 101. URL: https://trudymai.ru/published.php?ID=96960 (in Russ.).
[2] Baranov A.A., Grishko D.A., Chernov N.V. Flyby of large-size space debris objects situated at LEO with their successive de-orbiting. Nauka i obrazovanie: nauchnoe izdanie [Science & Education of the Bauman MSTU], 2016, no. 4, pp. 48–64. URL: https://www.elibrary.ru/item.asp?id=26537119 (in Russ.).
[3] Fadin I.A., Pirukhin V.A., Isupov A.A. Algorithm for calculating the error in estimating the parameters of the motion of a space object using a modification of the method of space triangulation by redundant measurement information. Izvestiya TulGU. Tekhnicheskie nauki [News of the Tula State University. Technical Sciences], 2023, no. 4, pp. 45–51. (In Russ.).
[4] Nazarenko Yu.V., Safronov V.V. The problem of pollution of outer space. Aktualnye problemy aviatsii i kosmonavtiki, 2015, vol. 2, no. 11, pp. 471–473. (In Russ.).
[5] Chuvilkina E.V., Khnyreva E.S. [Study of space debris in near-Earth space]. XVII Korolevskie chteniya. Vseros. molodezh. nauch. konf. s mezhd. uchastiem. T. 1 [XVII Korolev readings. Russ. Youth Sci. Conf. with Int. Anticipation. Vol. 1]. Samara, Izd-vo Samar. un-ta Publ., 2023, pp. 87. (In Russ.).
[6] Ulybyshev Yu.P., Sokolov A.V., Gunchenko M.Yu. Ballistic-navigation support of the Yamal-200 flight. Kosmicheskaya tekhnika i tekhnologii [Space Technique and Technologies], 2023, no. 4, pp. 75–88. (In Russ.).
[7] Yachkov I.V., Egorov A.Yu., Saparov I.I. et al. Arc microthrusters in small spacecraft systems, optimization of their functionality, and enhancement of space missions’ efficiency. Mezhdunarodnyy zhurnal gumanitarnykh i estestvennykh nauk [International Journal of Humanities and Natural Sciences], 2023, no. 12–5, pp. 83–86, doi: https://doi.org/10.24412/2500-1000-2023-12-5-83-86 (in Russ.).
[8] Curtis H.D. Orbital mechanics for engineering students. Butterworth-Heinemann, 2020. 780 p.
[9] Belokonov I.V. Kompleks metodik povysheniya tochnosti manevrirovaniya nanosputnika s dvigatelnoy ustanovkoy. Dis. kand. tekhn. nauk [A set of techniques for improving the accuracy of manoeuvring a nanosatellite with a propulsion system. Kand. tech. sci. diss.]. Samara, Samarskiy un-t Publ., 2023. 119 p. (In Russ.).
[10] Pak D. Linearized equations for J2 perturbed motion relative to an elliptical orbit. Master thesis. San Jose State University, 2005. 108 p.
[11] Levskiy M.V. The use of universal variables in problems of optimal control concerning spacecrafts orientation. Mekhatronika, avtomatizatsiya, upravlenie [Мechatronics, Automation, Control], 2014, no. 1, pp. 53–59. (In Russ.).
[12] Golubev Yu.F. Quaternion algebra in rigid body kinematics. Preprinty IPM im. M.V. Keldysha RAN [KIAM Preprint], 2013, no. 39. URL: https://library.keldysh.ru/preprint.asp?id=2013-39 (in Russ.).
[13] Salmin V.V., Petrukhin K.V., Kvetkin A.A. [Modeling of control processes of spacecraft orbits with low-thrust engines]. ITNT-2018. Samara, Novaya tekhnika Publ., 2018, pp. 2803–2812. (In Russ.).
[14] Baranov A.A. Razrabotka metodov rascheta parametrov manevrov kosmicheskikh apparatov v okrestnostyakh krugovoy orbity. Diss. dok. fiz.-mat. nauk [Development of methods for calculating parameters of spacecraft manoeuvres in the vicinity of a circular orbit. Doc. phys.-math. sci. diss.]. Moscow, IPM RAN Publ., 2019. 304 p. (In Russ.).
[15] De Ruiter A.H., Damaren C., Forbes J.R. Spacecraft dynamics and control. An introduction. Wiley, 2012. 592 p.
[16] Gordienko E.S., Ivashkin V.V. Analysis of optimal three-impulse transfer to an artificial lunar satellite orbit. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2016, no. 3, doi: http://dx.doi.org/10.18698/2308-6033-2016-3-1472 (in Russ.).