The Influence of Magnetron Sputtering Conditions on the Structure of Heat Resistant ZrO2 Nanostructured Coatings
Authors: Valyukhov S.G., Stognei O.V., Filatov M.S. | Published: 20.11.2015 |
Published in issue: #11(668)/2015 | |
Category: Aviation, Rocket and Technology | |
Keywords: RF-magnetron sputtering, nanostructured films, stabilized zirconia dioxide, thermal annealing |
The article describes the process of obtaining nanostructured stabilized zirconia dioxide Zr (Y, Hf)O2 coatings by magnetron RF-sputtering of a ceramic target. The coatings have a two-phase structure consisting of monoclinic and tetragonal dioxide modifications. It is shown that the partial oxygen pressure in the vacuum chamber affects the phase ratio. In particular, an increase in the oxygen pressure (from 0.23 Pa to 0.65 Pa) leads to a significant increase of the monoclinic phase volume fraction in the sputtered coating (from 15% to 85%). The grain size in the forming nanostructure is sensitive to the amount of oxygen only at low partial pressures (less than 0.35 Pa). The formation of the single phase (tetragonal) structure in the coating occurs after annealing at the temperature of 1100°C or higher, while the nanostructure of the material is preserved. The transition to the single-phase structure is accompanied by an increase in the coating micro hardness.
References
[1] Kablov E.N., Muboiadzhian S.A. Zharostoikie i teplozashchitnye pokrytiia dlia lopatok turbiny vysokogo davleniia GTD [Heat-resistant and heat-protective coatings for turbine blades of high pressure turbine engine]. Available at: http://viam.ru/public/files/2011/2011-205895.pdf (accessed 5 June 2015).
[2] Tamarin Iu.A., Kachanov E.B. Elektronno-luchevaia tekhnologiia naneseniia teplozashchitnykh pokrytii [Electron beam technology is the application of thermal barrier coatings]. Novye tekhnologicheskie protsessy i nadezhnost’ GTD [New manufacturing processes and reliable GTD]. 2008, no. 7, pp. 144–158.
[3] Sergeev V.P., Neifel’d V.V., Sungatulin A.R., Sergeev O.V., Fedorishcheva M.V., Nikalin A.Iu. Uvelichenie termotsiklicheskoi stoikosti pokrytii na osnove Zr–Y–O, poluchennykh metodom magnetronnogo osazhdeniia [Increased thermal cycling resistance of coatings based on Zr–Y–O, produced by magnetron deposition]. Izvestiia Tomskogo politekhnicheskogo universiteta [Bulletin of the Tomsk Polytechnic University]. 2010, vol. 317, no. 2, pp. 111–115.
[4] Song H.W., Guo S.R., Hu Z.Q. Coherent polycrystal model for the inverse Hall-Petch relation in nanocrystalline materials. Nanostructured Materials, 1999, vol. 11, no. 2, pp. 203–210.
[5] Sanchez-Hernandeza Z.E., Dominguez-Crespo M.A., Torres-Huerta A.M., Onofre-Bustamante E., Andraca Adame J., Dorantes-Rosales H. Improvement of adhesion and barrier properties of biomedical stainless steel by deposition of YSZ coatings using RF magnetron sputtering. Materials Characterization, 2014, vol. 91, pp. 50–57.
[6] Gyngazova S.A., Frangul’ian T.S., Vasil’ev I.P. K voprosu ob opredelenii fazovogo sostava v ob"eme obraztsov tsirkonievoi keramiki [On the issue of determination of phase composition in bulk zirconia ceramics]. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies]. 2013, no. 2, pp. 102–105.
[7] Filipov R.A., Freigen A.B. Kriticheskii radius vkliuchenii dioksida tsirkoniia v effekte transformatsionnogo uprochneniia keramik pro uprochniaiushchii effect [Critical radius inclusions zirconia ceramics hardening effect transformational about strengthening effect]. Fizicheskaia mezomekhanika [Physical Mesomechanics]. 2014, vol. 17, no. 2, pp. 55–64.
[8] Matrenin S.V., Slosman A.I. Tekhnicheskaia keramika [Technical Ceramics]. Tomsk, TPU publ., 2004. 75 p.
[9] Maissel L., Gleng R. Tekhnologiia tonkikh plenok [Technology of Thin Films]. Vol. 1. Moscow, Sovetskoe Radio publ., 1977. 664 p.
[10] Zavodinsky V.G., Chibisov A.N. Stability of cubic zirconia and of stoichiometric zirconia nanoparticles. Physics of the Solid State, 2006, vol. 48, no. 2, pp. 363-368.
[11] Andrieux M., Ribot P., Gasquires C., Servet B., Garry G. Effect of the oxygen partial pressure on the toughness of tetragonal zirconia thin films for optical applications. Applied Surface Science, 2012, vol. 263, pp. 284–290.
[12] Aldebert R., Traverse J.P. Structure and Ionic Mobility of Zirconia at High Temperature. Journal of the American Ceramic Society, 1985, vol. 68, pp. 34–40.